Carboguard 690GF Part A ## **RESENE PAINTS AUSTRALIA** Version No: **3.9**Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 2 Issue Date: **06/04/2017** Print Date: **06/04/2017** S.GHS.AUS.EN ## SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING ## **Product Identifier** | Product name | Carboguard 690GF Part A | |-------------------------------|--| | Synonyms | Not Available | | Proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | Other means of identification | Not Available | ## Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Part A of a two pack epoxy coating | |--------------------------|------------------------------------| | | | ## Details of the supplier of the safety data sheet | Registered company name | RESENE PAINTS AUSTRALIA | | |-------------------------|---|--| | Address | Production Ave, Molendinar QLD 4214 Australia | | | Telephone | +61 7 55126600 | | | Fax | +61 7 55126697 | | | Website | Not Available | | | Email | Not Available | | ## Emergency telephone number | Association / Organisation | Not Available | |-----------------------------------|---------------| | Emergency telephone numbers | 131126 | | Other emergency telephone numbers | Not Available | ## CHEMWATCH EMERGENCY RESPONSE | Primary Number | Alternative Number 1 | Alternative Number 2 | |----------------|----------------------|----------------------| | 1800 039 008 | 1800 039 008 | +612 9186 1132 | Once connected and if the message is not in your prefered language then please dial 01 ## **SECTION 2 HAZARDS IDENTIFICATION** ## Classification of the substance or mixture ## HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. | Poisons Schedule | Not Applicable | | |--------------------|--|--| | Classification [1] | Chronic Aquatic Hazard Category 3, Flammable Liquid Category 3, Skin Sensitizer Category 1, Reproductive Toxicity Category 2 | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | | ## Label elements **GHS** label elements | SIGNAL WORD | WARNING | |-------------|---------| |-------------|---------| ## Hazard statement(s) | H412 | Harmful to aquatic life with long lasting effects. | | |------|---|--| | H226 | Flammable liquid and vapour. | | | H317 | May cause an allergic skin reaction. | | | H361 | H361 Suspected of damaging fertility or the unborn child. | | ## Page 2 of 14 Carboguard 690GF Part A Issue Date: 06/04/2017 Print Date: 06/04/2017 ## Supplementary statement(s) Not Applicable ## Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | | |------|---|--| | P210 | Keep away from heat/sparks/open flames/hot surfaces No smoking. | | | P233 | eep container tightly closed. | | | P280 | /ear protective gloves/protective clothing/eye protection/face protection. | | | P281 | e personal protective equipment as required. | | | P240 | Ground/bond container and receiving equipment. | | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | | P242 | Use only non-sparking tools. | | | P243 | Take precautionary measures against static discharge. | | | P261 | Avoid breathing mist/vapours/spray. | | | P273 | Avoid release to the environment. | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | ## Precautionary statement(s) Response | P308+P313 | IF exposed or concerned: Get medical advice/attention. | | |----------------|--|--| | P363 | Wash contaminated clothing before reuse. | | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam for extinction. | | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | P303+P361+P353 | 3+P361+P353 IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | | ## Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | | |-----------|--|--| | P405 | Store locked up. | | ## Precautionary statement(s) Disposal Dispose of contents/container in accordance with local regulations. ## **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** ## Substances See section below for composition of Mixtures ## Mixtures | CAS No | %[weight] | Name | |------------|-----------|---| | 25068-38-6 | 10-20 | bisphenol A/ diglycidyl ether resin, liquid | | 108-88-3 | 1-10 | toluene | | 21645-51-2 | 1.73 | aluminium hydroxide | # S # D | SECTION 4 FIRST AID ME | EASURES | | |-----------------------------------|--|--| | Description of first aid measures | | | | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | | Skin Contact | If skin contact occurs: ► Immediately remove all contaminated clothing, including footwear. ► Flush skin and hair with running water (and soap if available). ► Seek medical attention in event of irritation. For thermal burns: ► Decontaminate area around burn. ► Consider the use of cold packs and topical antibiotics. For first-degree burns (affecting top layer of skin) ► Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides. ► Use compresses if running water is not available. | | | | Cover with sterile non-adhesive bandage or clean cloth. Do NOT apply butter or ointments; this may cause infection. | | ▶ Give over-the counter pain relievers if pain increases or swelling, redness, fever occur. ▶ Do NOT apply ice as this may lower body temperature and cause further damage. For second-degree burns (affecting top two layers of skin) ▶ Use compresses if running water is not available. ► Cool the burn by immerse in cold running water for 10-15 minutes. Chemwatch: 9-93919 Page 3 of 14 Issue Date: 06/04/2017 Version No: 3.9 Print Date: 06/04/2017 ## Carboguard 690GF Part A ▶ Do NOT break blisters or apply butter or ointments; this may cause infection. ▶ Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape. To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort): Lav the person flat. ► Elevate feet about 12 inches. Elevate burn area above heart level, if possible. ► Cover the person with coat or blanket. Seek medical assistance. For third-degree burns Seek immediate medical or emergency assistance. In the mean time: Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound. Separate burned toes and fingers with dry, sterile dressings. ▶ Do not soak burn in water or apply ointments or butter; this may cause infection. ► To prevent shock see above. For an airway burn, do not place pillow under the person's head when the person is lying down. This can close the airway. ▶ Have a person with a facial burn sit up. ▶ Check pulse and breathing to monitor for shock until emergency help arrives. If fumes, aerosols or combustion products are inhaled remove from contaminated area. Inhalation Other measures are usually unnecessary. ▶ Immediately give a glass of water. Ingestion First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. ## Indication of any immediate medical attention and special treatment needed Treat symptomatically. ## **SECTION 5 FIREFIGHTING MEASURES** ## Extinguishing media ## Special hazards arising from the substrate or mixture | Fire Incompatibility | ► Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | |-------------------------|--| |
Advice for firefighters | | | Fire Fighting | | | | Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. | Fire/Explosion Hazard carbon dioxide (CO2) Combustion products include: carbon monoxide (CO) sulfur oxides (SOx) other pyrolysis products typical of burning organic material. On combustion, may emit toxic fumes of carbon monoxide (CO). When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles. HAZCHEM ## **SECTION 6 ACCIDENTAL RELEASE MEASURES** ## Personal precautions, protective equipment and emergency procedures See section 8 ## **Environmental precautions** See section 12 | Methods and material for | containment and cleaning up | |--------------------------|---| | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. | | Major Spills | | Personal Protective Equipment advice is contained in Section 8 of the SDS. ## **SECTION 7 HANDLING AND STORAGE** Chemwatch: 9-93919 Page 4 of 14 Issue Date: 06/04/2017 ## Carboquard 690GF Part A Version No. 3.9 Print Date: 06/04/2017 #### Precautions for safe handling Safe handling Other information Suitable container - ► Containers, even those that have been emptied, may contain explosive vapours. - ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs. - ▶ Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid generation of static electricity. - DO NOT use plastic buckets - ▶ Earth all lines and equipment. - Use spark-free tools when handling. - Avoid contact with incompatible materials - When handling, DO NOT eat, drink or smoke Keep containers securely sealed when not in use. - Avoid physical damage to containers - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - ▶ DO NOT allow clothing wet with material to stay in contact with skin - ▶ Store in original containers in approved flammable liquid storage area. - Store away from incompatible materials in a cool, dry, well-ventilated area - DO NOT store in pits, depressions, basements or areas where vapours may be trapped - ▶ No smoking, naked lights, heat or ignition sources - Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access - ▶ Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances - ▶ Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. - ► Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas - ▶ Keep adsorbents for leaks and spills readily available. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): - · Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - ▶ Storage tanks should be above ground and diked to hold entire contents. ## Conditions for safe storage, including any incompatibilities - ▶ Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - ▶ Check that containers are clearly labelled and free from leaks - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - ► For materials with a viscosity of at least 2680 cSt. (23 deg. C) - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. For aluminas (aluminium oxide): Incompatible with hot chlorinated rubber. In the presence of chlorine trifluoride may react violently and ignite. -May initiate explosive polymerisation of olefin oxides including ethylene oxide. -Produces exothermic reaction above 200 C with halocarbons and an exothermic reaction at ambient temperatures with halocarbons in the presence of other -Produces exothermic reaction with oxygen difluoride. -May form explosive mixture with oxygen difluoride. -Forms explosive mixtures with sodium nitrate -Reacts vigorously with vinvl acetate Aluminium oxide is an amphoteric substance, meaning it can react with both acids and bases, such as hydrofluoric acid and sodium hydroxide, acting as an acid with a base and a base with an acid, neutralising the other and producing a salt. Barium sulfate (barytes) ## Storage incompatibility - reacts violently with dimethyl sulfoxide, sodium acetylide, finely divided carbon, aluminium, magnesium, zirconium, and possibly other active metals, especially at elevated temperatures - ▶ is incompatible with potassium, phosphorus (ignites when primed with nitrate-calcium silicide) - Avoid storage with hydrogen fluoride/ hydrofluoric acid, oxygen difluoride, manganese trifluoride, fluorine and other fluorine containing compounds, manganese trioxide, chlorates, chlorine trifluoride, chlorine trioxide, strong alkalis, metal oxides, concentrated orthophosphoric acid or vinyl acetate. Titanium dioxide - reacts with strong acids, strong oxidisers - reacts violently with aluminium, calcium, hydrazine, lithium (at around 200 deg C.), magnesium, potassium, sodium, zinc, especially at elevated temperatures - these reactions involves reduction of the oxide and are accompanied by incandescence - ▶ dust or powders can ignite and then explode in a carbon dioxide atmosphere Glycidyl ethers: - realy form unstable peroxides on storage in air ,light, sunlight, UV light or other ionising radiation, trace metals inhibitor should be maintained at adequate - ▶ may polymerise in contact with heat, organic and inorganic free radical producing initiators Page **5** of **14** ## Carboguard 690GF Part A Issue Date: **06/04/2017** Print Date: **06/04/2017** - ▶ may polymerise with evolution of heat in contact with oxidisers, strong acids, bases and amines - react violently with strong oxidisers, permanganates, peroxides, acyl halides, alkalis, ammonium persulfate, bromine dioxide - ▶ attack some forms of plastics, coatings, and rubber - ► Avoid reaction with oxidising agents - X Must not be stored together - May be stored together with specific preventions - May be stored together ## **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** ## **Control parameters** ## OCCUPATIONAL EXPOSURE LIMITS (OEL) ## INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|---------------------|--|--------------------|---------------------|---------------|---------------| | Australia Exposure Standards | toluene | Toluene | 191 mg/m3 / 50 ppm | 574 mg/m3 / 150 ppm | Not Available | Sk | | Australia Exposure Standards | aluminium hydroxide | Fume (thermally generated) (respirable dust) | 2 mg/m3 | Not Available | Not Available | Not Available | #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---
---|---------------|---------------|---------------| | bisphenol A/ diglycidyl ether resin, liquid | Epoxy resin includes EPON 1001, 1007, 820, ERL-2795 | 90 mg/m3 | 990 mg/m3 | 5,900 mg/m3 | | toluene | Toluene | Not Available | Not Available | Not Available | | aluminium hydroxide | Aluminum hydroxide | 8.7 mg/m3 | 73 mg/m3 | 440 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | bisphenol A/ diglycidyl ether resin, liquid | Not Available | Not Available | | toluene | 2,000 ppm | 500 ppm | | aluminium hydroxide | Not Available | Not Available | ## Exposure controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and well typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100
f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction # Page 6 of 14 Carboquard 690GF Part A Issue Date: **06/04/2017**Print Date: **06/04/2017** apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection # Eye and face protection - Safety glasses with side shields. - ▶ Chemical goggles Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection Hands/feet protection #### See Hand protection below #### NOTE: - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact, - · chemical resistance of glove material, - glove thickness and #### dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - · Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be wom on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - ▶ When handling liquid-grade epoxy resins wear chemically protective gloves (e.g nitrile or nitrile-butatoluene rubber), boots and aprons. - DO NOT use cotton or leather (which absorb and concentrate the resin), polyvinyl chloride, rubber or polyethylene gloves (which absorb the resin). - ▶ DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use. ## Body protection ## See Other protection below ## l l - Overalls.PVC Apron. - PVC protective suit may be required if exposure severe. - Evewash unit. - ▶ Ensure there is ready access to a safety shower ## Other protection - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of
ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. ## Thermal hazards Not Available ## Recommended material(s) ## GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Carboguard 690GF Part A | Material | СРІ | |----------|-----| | VITON | Α | ## Respiratory protection Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | | Required | Maximum gas/vapour | Half-face | Full-Face | |--|----------|--------------------|-----------|-----------| |--|----------|--------------------|-----------|-----------| Issue Date: **06/04/2017**Print Date: **06/04/2017** | BUTYL | С | |-------------------|---| | CPE | С | | NATURAL RUBBER | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | SARANEX-23 | С | | SARANEX-23 2-PLY | С | | TEFLON | С | | VITON/CHLOROBUTYL | С | | VITON/NEOPRENE | С | | minimum protection factor | concentration present in air p.p.m. (by volume) | Respirator | Respirator | |---------------------------|---|--------------------|--------------------| | up to 10 | 1000 | A-AUS /
Class 1 | - | | up to 50 | 1000 | - | A-AUS /
Class 1 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | A-2 | | up to 100 | 10000 | - | A-3 | | 100+ | | - | Airline** | ^{* -} Continuous Flow Carboguard 690GF Part A $A(All\ classes) = Organic\ vapours,\ B\ AUS\ or\ B1 = Acid\ gases,\ B2 = Acid\ gas\ or\ hydrogen\ cyanide(HCN),\ E = Sulfur\ dioxide(SO2),\ G = Agricultural\ chemicals,\ K = Ammonia(NH3),\ Hg = Mercury,\ NO = Oxides\ of\ nitrogen,\ MB = Methyl\ bromide,\ AX = Low\ boiling\ point\ organic\ compounds(below\ 65\ deg\ C)$ A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - ## **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** ## Information on basic physical and chemical properties | Appearance | coloured viscous liquid | | | |--|-------------------------|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | 1.74 - 2.05 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | 80 - 205 | Molecular weight (g/mol) | Not Available | | Flash point (°C) | 33 | Taste | Not Available | | Evaporation rate | 0.7 BuAC = 1 | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 7.1 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 0.9 | Volatile Component (%vol) | 8 | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | >1 | VOC g/L | Not Available | ## **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ## **SECTION 11 TOXICOLOGICAL INFORMATION** $^{^{\}star\star}$ - Continuous-flow or positive pressure demand. ^{*} CPI - Chemwatch Performance Index ^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. Chemwatch: 9-93919 Version No: 3.9 Page 8 of 14 Carboguard 690GF Part A Issue Date: 06/04/2017 Print Date: 06/04/2017 ## Information on toxicological effects | Inhaled | | irritation of the respiratory tract (as classified by EC Directives using animal models). kept to a minimum and that suitable control measures be used in an occupational setting. | | |---|---|---|--| | Ingestion | Ingestion of soluble barium compounds may result in ulceration of the mucous membranes of the gastrointestinal tract, tightness in the muscles of the face and neck, gastroenteritis, vomiting, diarrhoea, muscular tremors and paralysis, anxiety, weakness, laboured breathing, cardiac irregularity due to contractions of smooth striated and cardiac muscles (often violent and painful), slow irregular pulse, hypertension, convulsions and respiratory failure. Male rats exposed to a single oral dose of bisphenol A diglycidyl ether (BADGE) at 750, 1000, and 2000 mg/kg/day showed a significantly increase in the number of immature and maturing sperm on the testis. There were no significant differences with respect to sperm head count, sperm motility, and sperm abnormality in the BADGE treatment groups The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. | | | | Skin Contact | The liquid may be miscible with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives. Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Thus it may cause itching and skin reaction and inflammation. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | | | Eye | There is some evidence to suggest that this material can cause | eye irritation and damage in some persons. | | | Chronic | Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Ample evidence from experiments exists that there is a suspicion this material directly reduces fertility. Based on experience with animal studies, exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother. Animal testing shows long term exposure to aluminium oxides may cause lung disease and cancer, depending on the size of the particle. The smaller the size, the greater the tendencies of causing harm. Glycidyl ethers can cause genetic damage and cancer. There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Bisphenol A may have effects similar to female sex hormones and when administered to pregnant women, may damage the foetus. It may also damage
male reproductive organs and sperm. | | | | | тохісіту | IRRITATION | | | Carboguard 690GF Part A | Not Available | Not Available | | | | TOXICITY | IRRITATION | | | bisphenol A/ diglycidyl ether resin, liquid | dermal (rat) LD50: >800 mg/kg ^[1] | Eye (rabbit): 100mg - Mild | | | | Oral (rat) LD50: 13447 mg/kg ^[1] | | | | | TOXICITY | IRRITATION | | | | Dermal (rabbit) LD50: 12124 mg/kg ^[2] | Eye (rabbit): 2mg/24h - SEVERE | | | 4.1 | Inhalation (rat) LC50: >26700 ppm/1hr ^[2] | Eye (rabbit):0.87 mg - mild | | | toluene | Inhalation (rat) LC50: 49 mg/L/4hr ^[2] | Eye (rabbit):100 mg/30sec - mild | | | | Oral (rat) LD50: 636 mg/kg ^[2] | Skin (rabbit):20 mg/24h-moderate | | | | | Skin (rabbit):500 mg - moderate | | | -Lundah I | TOXICITY | IRRITATION | | | aluminium hydroxide | Oral (rat) LD50: >2000 mg/kg ^[1] | Not Available | | | Legend: | Nalue obtained from Europe ECHA Registered Substances - , extracted from RTECS - Register of Toxic Effect of chemical Su | Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data bstances | | The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential; the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic oestrogens is widely used in industry, particularly in plastics #### **BISPHENOL A/** DIGLYCIDYL ETHER RESIN, LIQUID Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities. Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydrogen bonding to the acceptor site of the oestrogen receptor. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. In mice, dermal application of bisphenol A diglycidyl ether (BADGE) (1, 10, or 100 mg/kg) for 13 weeks produced mild to moderate chronic active dermatitis. At the high dose, spongiosis and epidermal micro abscess formation were observed. In rats, dermal application of BADGE (10, 100, or 1000 mg/kg) for 13 weeks Chemwatch: 9-93919 Page 9 of 14 Issue Date: 06/04/2017 Version No: 3.9 ## Carboguard 690GF Part A Print Date: 06/04/2017 resulted in a decrease in body weight at the high dose. The no-observable effect level (NOEL) for dermal exposure was 100 mg/kg for both sexes. In a separate study application of BADGE (same doses) five times per week for ~13 weeks not only caused a decrease in body weight but also produced chronic dermatitis at all dose levels in males and at >100 mg/kg in females (as well as in a satellite group of females given 1000 mg/kg). Reproductive and Developmental Toxicity. BADGE (50, 540, or 750 mg/kg) administered to rats via gavage for 14 weeks (P1) or 12 weeks (P2) produced decreased body weight in all males at the mid dose and in both males and females at the high dose, but had no reproductive effects. The NOEL for reproductive effects was 750 mg/kg Carcinogenicity: IARC concluded that "there is limited evidence for the carcinogenicity of bisphenol A diglycidyl ether in experimental animals." Its overall evaluation was "Bisphenol A diglycidyl ether is not classifiable as to its carcinogenicity to humans (Group 3). In a lifetime tumourigenicity study in which 90-day-old C3H mice received three dermal applications per week of BADGE (undiluted dose) for 23 months, only one out of 32 animals developed a papilloma after 16 months. A retest, in which skin paintings were done for 27 months, however, produced no tumours (Weil et al., 1963). In another lifetime skin-painting study, BADGE (dose n.p.) was also reported to be noncarcinogenic to the skin of C3H mice; it was, however, weakly carcinogenic to the skin of C57BL/6 mice (Holland et al., 1979; cited by Canter et al., 1986). In a two-year bioassay, female Fisher 344 rats dermally exposed to BADGE (1, 100, or 1000 mg/kg) showed no evidence of dermal carcinogenicity but did have low incidences of tumours in the oral cavity (U.S. EPA, 1997). Genotoxicity: In S. typhimurium strains TA100 and TA1535, BADGE (10-10,000 ug/plate) was mutagenic with and without S9; negative results were obtained in TA98 and TA1537 (Canter et al., 1986; Pullin, 1977). In a spot test, BADGE (0.05 or 10.00 mg) failed to show mutagenicity in strains TA98 and TA100 (Wade et al., 1979). Negative results were also obtained in the body fluid test using urine of female BDF and ICR mice (1000 mg/kg BADGE), the mouse host-mediated assay (1000 mg/kg), micronucleus test (1000 mg/kg), and dominant lethal assay (~3000 mg/kg). Immunotoxicity: Intracutaneous injection of diluted BADGE (0.1 mL) three times per week on alternate days (total of 8 injections) followed by a three-week incubation period and a challenge dose produced sensitisation in 19 of 20 guinea pigs Consumer exposure to BADGE is almost exclusively from migration of BADGE from can coatings into food. Using a worst-case scenario that assumes BADGE migrates at the same level into all types of food, the estimated per capita daily intake for a 60-kg individual is approximately 0.16 ug/kg body weight/day. A review of one- and two-generation reproduction studies and developmental investigations found no evidence of reproductive or endocrine toxicity, the upper ranges of dosing being determined by maternal toxicity. The lack of endocrine toxicity in the reproductive and developmental toxicological tests is supported by negative results from both in vivo and in vitro assays designed specifically to detect oestrogenic and androgenic properties of BADGE. An examination of data from sub-chronic and chronic toxicological studies support a NOAEL of 50 mg/kg/body weight day from the 90-day study, and a NOAEL of 15 mg/kg body weigh/day (male rats) from the 2-year carcinogenicity study. Both NOAELS are considered appropriate for risk assessment. Comparing the estimated daily human intake of 0.16 ug/kg body weight/day with the NOAELS of 50 and 15 mg/kg body weight/day shows human exposure to BADGE from can coatings is between 250,000 and 100,000-fold lower than the NOAELs from the most sensitive toxicology tests. These large margins of safety together with lack of reproductive, developmental, endocrine and carcinogenic effects supports the continued use of BADGE for use in articles intended to come into contact with foodstuffs Foetoxicity has been observed in animal studies Oral (rabbit, female) NOEL 180 mg/kg (teratogenicity; NOEL (maternal 60 mg/kg The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. For toluene: #### **Acute Toxicity** Humans exposed to intermediate to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis, and death. Similar effects are observed in short-term animal studies Humans - Toluene ingestion or inhalation can result in severe central nervous system depression, and in large doses, can act as a narcotic. The ingestion of about 60 mL resulted in fatal nervous system depression within 30 minutes in one reported case. Constriction and necrosis of myocardial fibers, markedly swollen liver, congestion and haemorrhage of the lungs and acute tubular necrosis were found on autopsy Central nervous system effects (headaches, dizziness, intoxication) and eve irritation occurred following inhalation exposure to 100 ppm toluene 6 hours/day for 4 days. Exposure to 600 ppm for 8 hours resulted in the same and more serious symptoms including euphoria, dilated pupils, convulsions, and nausea. Exposure to 10.000-30.000 ppm has been reported to cause narcosis and death Toluene can also strip the skin of lipids causing dermatitis Animals - The initial effects are instability and incoordination, lachrymation and sniffles (respiratory exposure), followed by narcosis. Animals die of respiratory failure from severe nervous system
depression. Cloudy swelling of the kidneys was reported in rats following inhalation exposure to 1600 ppm, 18-20 hours/day for 3 days ## Subchronic/Chronic Effects: Repeat doses of toluene cause adverse central nervous system effects and can damage the upper respiratory system, the liver, and the kidney. Adverse effects occur as a result from both oral and the inhalation exposures. A reported lowest-observed-effect level in humans for adverse neurobehavioral effects is 88 ppm. Humans - Chronic occupational exposure and incidences of toluene abuse have resulted in hepatomegaly and liver function changes. It has also resulted in nephrotoxicity and, in one case, was a cardiac sensitiser and fatal cardiotoxin. Neural and cerebellar dystrophy were reported in several cases of habitual "glue sniffing." An epidemiological study in France on workers chronically exposed to toluene fumes reported leukopenia and neutropenia. Exposure levels were not given in the secondary reference; however, the average urinary excretion of hippuric acid, a metabolite of toluene, was given as 4 g/L compared to a normal level of 0.6 g/L Animals - The major target organs for the subchronic/chronic toxicity of toluene are the nervous system, liver, and kidney. Depressed immune response has been reported in male mice given doses of 105 mg/kg/day for 28 days. Toluene in corn oil administered to F344 male and female rats by gavage 5 days/week for 13 weeks, induced prostration, hypoactivity, ataxia, piloerection, lachrymation, excess salivation, and body tremors at doses 2500 mg/kg. Liver, kidney, and heart weights were also increased at this dose and histopathologic lesions were seen in the liver, kidneys, brain and urinary bladder. The no-observed-adverse effect level (NOAEL) for the study was 312 mg/kg (223 mg/kg/day) and the lowest-observed-adverse effect level (LOAEL) for the study was 625 mg/kg (446 mg/kg/day) . ## **Developmental/Reproductive Toxicity** Exposures to high levels of toluene can result in adverse effects in the developing human foetus. Several studies have indicated that high levels of toluene can also adversely effect the developing offspring in laboratory animals. Humans - Variable growth, microcephaly, CNS dysfunction, attentional deficits, minor craniofacial and limb abnormalities, and developmental delay were seen in three children exposed to toluene in utero as a result of maternal solvent abuse before and during pregnancy Animals - Stemebral alterations, extra ribs, and missing tails were reported following treatment of rats with 1500 mg/m3 toluene 24 hours/day during days 9-14 of gestation. Two of the dams died during the exposure. Another group of rats received 1000 mg/m3 8 hours/day during days 1-21 of gestation. No maternal deaths or toxicity occurred, however, minor skeletal retardation was present in the exposed fetuses. CFLP Mice were exposed to 500 or 1500 mg/m3 toluene continuously during days 6-13 of pregnancy. All dams died at the high dose during the first 24 hours of exposure, however none died at 500 mg/m3. Decreased foetal weight was reported, but there were no differences in the incidences of skeletal malformations or anomalies between the treated and control offspring. Absorption - Studies in humans and animals have demonstrated that toluene is readily absorbed via the lungs and the gastrointestinal tract. Absorption through the skin is estimated at about 1% of that absorbed by the lungs when exposed to toluene vapor. Dermal absorption is expected to be higher upon exposure to the liquid; however, exposure is limited by the rapid evaporation of toluene Distribution - In studies with mice exposed to radiolabeled toluene by inhalation, high levels of radioactivity were present in body fat, bone marrow, spinal nerves, spinal cord, and brain white matter. Lower levels of radioactivity were present in blood, kidney, and liver. Accumulation of toluene has generally been found in adipose tissue, other tissues with high fat content, and in highly vascularised tissues . Metabolism - The metabolites of inhaled or ingested toluene include benzyl alcohol resulting from the hydroxylation of the methyl group. Further oxidation results in the formation of benzaldehyde and benzoic acid. The latter is conjugated with glycine to yield hippuric acid or reacted with glucuronic acid to form benzoyl glucuronide. o-cresol and p-cresol formed by ring hydroxylation are considered minor metabolites Excretion - Toluene is primarily (60-70%) excreted through the urine as hippuric acid. The excretion of benzoyl glucuronide accounts for 10-20%, and excretion of unchanged toluene through the lungs also accounts for 10-20%. Excretion of hippuric acid is usually complete within 24 hours after exposure. ## ALUMINIUM HYDROXIDE TOLUENE No significant acute toxicological data identified in literature search. ## Carboguard 690GF Part A | Acute Toxicity | 0 | Carcinogenicity | 0 | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | 0 | Reproductivity | ✓ | | Serious Eye
Damage/Irritation | 0 | STOT - Single Exposure | 0 | | Respiratory or Skin sensitisation | ~ | STOT - Repeated Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: X - Data available but does not fill the criteria for classification Data available to make classification Data Not Available to make classification #### SECTION 12 ECOLOGICAL INFORMATION #### Toxicity | Ingredient | Endpoint | Test Duration (hr) | Species | Value | Source | |---|---|--------------------|-------------------------------|-------------|--------| | bisphenol A/ diglycidyl ether resin, liquid | LC50 | 96 | Fish | 1.2mg/L | 2 | | bisphenol A/ diglycidyl ether resin, liquid | EC50 | 72 | Algae or other aquatic plants | 9.4mg/L | 2 | | bisphenol A/ diglycidyl ether resin, liquid | EC50 | 24 | Crustacea | 3.6mg/L | 2 | | bisphenol A/ diglycidyl ether resin, liquid | NOEC | 72 | Algae or other aquatic plants | 2.4mg/L | 2 | | toluene | LC50 | 96 | Fish | 0.0073mg/L | 4 | | toluene | EC50 | 48 | Crustacea | 3.78mg/L | 5 | | toluene | EC50 | 72 | Algae or other aquatic plants | 12.5mg/L | 4 | | toluene | BCF | 24 | Algae or other aquatic plants | 10mg/L | 4 | | toluene | EC50 | 384 | Crustacea | 1.533mg/L | 3 | | toluene | NOEC | 168 | Crustacea | 0.74mg/L | 5 | | aluminium hydroxide | LC50 | 96 | Fish | 0.2262mg/L | 2 | | aluminium hydroxide | EC50 | 48 | Crustacea | 0.7364mg/L | 2 | | aluminium hydroxide | EC50 | 96 | Algae or other aquatic plants | 0.0054mg/L | 2 | | aluminium hydroxide | EC50 | 168 | Crustacea | 0.0076mg/L | 2 | | aluminium hydroxide | NOEC | 72 | Algae or other aquatic plants | >=0.004mg/L | 2 | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data | | | | | May cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. For bisphenol A and related bisphenols: Environmental fate: Biodegradability (28 d) 89% - Easily biodegradable Bioconcentration factor (BCF) 7.8 mg/l Bisphenol A, its derivatives and analogues, can be released from polymers, resins and certain substances by metabolic products Substance does not meet the criteria for PBT or vPvB according to Regulation (EC) No 1907/2006, Annex XIII As an environmental contaminant, bisphenol A interferes with nitrogen fixation at the roots of leguminous plants associated with the bacterial symbiont Sinorhizobium meliloti. Despite a half-life in the soil of only 1-10 days, its ubiquity makes it an important pollutant. According to Environment Canada, "initial assessment shows that at low levels, bisphenol A can harm fish and organisms over time. Studies also indicate that it can currently be found in municipal wastewater." However, a study conducted in the United States found that 91-98% of bisphenol A may be removed from water during treatment at municipal water treatment plants. Ecotoxicity: Fish LC50 (96 h): 4.6 mg/l (freshwater fish); 11 mg/l (saltwater fish): NOEC 0.016 mg/l (freshwater fish- 144 d); 0.064 mg/l (saltwater fish 164 d) Fresh water invertebrates EC50 (48 h): 10.2 mg/l: NOEC 0.025 mg/l - 328 d) Marine water invertebrate EC50 (96 h): 1.1 mg/l; NOEC 0.17 mg/l (28 d) Freshwater algae (96 h): 2.73 mg/l Marine water algae (96 h): 1.1 mg/l Fresh water plant EC50 (7 d): 20 mg/l: NOEC 7.8 mg/l In general, studies have shown that bisphenol A can affect growth, reproduction and development in aquatic organisms. Among freshwater organisms, fish appear to be the most sensitive species. Evidence of endocrine-related effects in fish, aquatic invertebrates, amphibians and reptiles has been reported at environmentally relevant exposure levels lower than those required for acute toxicity. There is a widespread variation in reported values for endocrine-related effects, but many fall in the range of 1 ua/L to 1 ma/L A 2009 review of the biological impacts of plasticisers on wildlife published by the Royal Society with a
focus on annelids (both aquatic and terrestrial), molluscs, crustaceans, insects, fish and amphibians concluded that bisphenol A has been shown to affect reproduction in all studied animal groups, to impair development in crustaceans and amphibians and to induce genetic aberrations. A large 2010 study of two rivers in Canada found that areas contaminated with hormone-like chemicals including bisphenol A showed females made up 85 per cent of the population of a certain fish, while females made up only 55 per cent in uncontaminated areas. Although abundant data are available on the toxicity of bisphenol-A (2,2-bis (4-hydroxydiphenyl)propane; (BPA) A variety of BPs were examined for their acute toxicity against Daphnia magna, mutagenicity, and oestrogenic activity using the Daphtoxkit (Creasel Ltd.), the umu test system, and the yeast two-hybrid system, respectively, in comparison with BPA. BPA was moderately toxic to D. magna (48-h EC50 was 10 mg/l) according to the current U.S. EPA acute toxicity evaluation standard, and it was weakly oestrogenic with 5 orders of magnitude lower activity than that of the natural estrogen 17 beta-oestradiol in the yeast screen, while no mutagenicity was observed. All seven BPs tested here showed moderate to slight acute toxicity, no mutagenicity, and weak oestrogenic activity as well as BPA. Some of the BPs showed considerably higher oestrogenic activity than BPA, and others exhibited much lower activity. Bisphenol S (bis(4-hydroxyphenyl)sulfide) showed oestrogenic activity. Biodegradation is a major mechanism for eliminating various environmental pollutants. Studies on the biodegradation of bisphenols have mainly focused on bisphenol A. A number of BPA-degrading bacteria have been isolated from enrichments of sludge from wastewater treatment plants. The first step in the biodegradation of BPA is the hydroxylation of the carbon atom of a methyl group or the quaternary carbon in the BPA molecule. Judging from these features of the biodegradation mechanisms, it is possible that the same mechanism used for BPA is used to Chemwatch: 9-93919 Page 11 of 14 Version No: 3.9 Carboguard 690GF Part A Issue Date: **06/04/2017**Print Date: **06/04/2017** biodegrade all bisphenols that have at least one methyl or methylene group bonded at the carbon atom between the two phenol groups. However, bisphenol F ([bis(4-hydroxyphenyl)methane; BPF), which has no substituent at the bridging carbon, is unlikely to be metabolised by such a mechanism. Nevertheless BPF is readily degraded by river water microorganisms under aerobic conditions. From this evidence, it was clear that a specific mechanism for biodegradation of BPF does exist in the natural ecosystem, Algae can enhance the photodegradation of bisphenols. The photodegradation rate of BPF increased with increasing algae concentration. Humic acid and Fe3+ ions also enhanced the photodegradation of BPF. The effect of pH value on the BPF photodegradation was also important. Significant environmental findings are limited. Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit common characteristics with respect to environmental fate and ecotoxicology. One such oxirane is ethyloxirane and data presented here may be taken as representative. For 1,2-Butylene oxide (Ethyloxirane): log Kow values of 0.68 and 0.86. BAF and BCF: 1 to 17 L./kg. Aquatic Fate - Ethyloxirane is highly soluble in water and has a very low soil-adsorption coefficient, which suggests that, if released to water, adsorption of ethyloxirane to sediment and suspended solids is not expected. Volatilization of ethyloxirane from water surfaces would be expected. Ethyloxirane is hydrolysable, with a half-life of 6.5 days, and biodegradable up to 100% degradation and is not expected to persist in water. Models have predicted a biodegradation half-life in water of 15 days. Terrestrial Fate: When released to soil, ethyloxirane is expected to have low adsorption and thus very high mobility. Volatilization from moist soil and dry soil surfaces is expected. Ethyloxirane is not expected to be persistent in soil. Atmospheric Fate: It is expected that ethyloxirane exists solely as a vapor in ambient atmosphere. Ethyloxirane may also be removed from the atmosphere by wet deposition processes. The half-life in air is about 5.6 days from the reaction of ethyloxirane with photochemically produced hydroxyl radicals which indicates that this chemical meets the persistence criterion in air (half-life of = 2 days). Ecotoxicity - The potential for bioaccumulation of ethyloxirane in organisms is likely to be low and has low to moderate toxicity to aquatic organisms. Ethyloxirane is acutely toxic to water fleas and toxicity values for bacteria are close to 5000 mg/L. For algae, toxicity values exceed 500 mg/L. For Surfactants: Kow cannot be easily determined due to hydrophilic/hydrophobic properties of the molecules in surfactants. BCF value: 1-350. Aquatic Fate: Surfactants tend to accumulate at the interface of the air with water and are not extracted into one or the other liquid phases Terrestrial Fate: Anionic surfactants are not appreciably sorbed by inorganic solids. Cationic surfactants are strongly sorbed by solids, particularly clays. Significant sorption of anionic and non-ionic surfactants has been observed in activated sludge and organic river sediments. Surfactants have been shown to improve water infiltration into soils with moderate to severe hydrophobic or water-repellent properties. Ecotoxicity: Some surfactants are known to be toxic to animals, ecosystems and humans, and can increase the diffusion of other environmental contaminants. The acute aquatic toxicity generally is considered to be related to the effects of the surfactant properties on the organism and not to direct chemical toxicity. Surfactants should be considered to be toxic to aquatic species under conditions that allow contact of the chemicals with the organisms. Surfactants are expected to transfer slowly from water into the flesh of fish. During this process, readily biodegradable surfactants are expected to be metabolized rapidly during the process of bioaccumulation. Surfactants are not to be considered to show bioaccumulation potential if they are readily biodegradable. For Barium and its Compounds: Environmental Fate: Barium is a highly reactive metal occurring naturally only in a combined state, primarily as inorganic complexes. Conditions such as pH, oxidation-reduction potential, cation exchange capacity, and the presence of sulfate, carbonate, and the presence of metal oxides will affect the partitioning of barium and its compounds in the environment. The element is released to environmental by both natural processes and man-made sources. Most barium released to the environment from industrial sources is in forms that do not become widely dispersed. Atmospheric Fate: In the atmosphere, barium is likely to be present in particulate form. Barium compounds will be removed from the atmosphere via wet/dry deposition. The substance may change to different forms of barium in the air. Terrestrial Fate: Soil - Barium will leach from geological formations to groundwater and will adsorb to soil. Barium is not very mobile in most soil systems and will form soluble complexes with fulvic/humic acids. Transportation rates of barium in soil are dependent on the characteristics of soil material. In soils with high positive ion exchange capacity, (e.g., fine textured mineral soils or soils with high organic matter content), barium mobility will be limited by adsorption. Soils high in calcium carbonate leave barium carbonate residues, which limit mobility. Barium produces barium sulfate residues in the presence of sulfates. Barium is more mobile, and is more likely to be leached, from soils in the presence of chloride and under acidic conditions. Barium binds with fatty acids, (e.g., in acidic landfill leachate), and will be much more mobile in soils containing fatty acids. Plants - Barium is not expected to concentrate in plants, relative to amounts found in soils; however, there are some plants, (beans, forage plants, Brazil nuts, and mushrooms), which accumulate barium. Aquatic Fate: Barium will adsorb to sediment/suspended particulate matter. Precipitation of barium sulfate salts is accelerated where rivers enter the ocean. Sedimentation of suspended solids removes a large portion of the barium content from surface waters. Barium in sediments is found largely in the form of barium sulfate, (barite). Ecotoxicity: Barium concentration will increase as it moves up the food chain in both land and aquatic species. In aquatic media, barium is likely to precipitate out of solution as an insoluble salt, (i.e. barium sulfate/barium sulfite). The uptake of barium by fish and marine organisms is also an important removal mechanism. Barium may concentrate in marine plants by a factor of 400-4,000 times the level present in the water. The substance may concentrate in marine animals, plankton, and brown algae. ## DO NOT discharge into sewer or waterways. ## Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---|---------------------------|-----------------------------| | bisphenol A/ diglycidyl ether resin, liquid | HIGH | HIGH | | toluene | LOW (Half-life = 28 days) | LOW (Half-life = 4.33 days) | ## Bioaccumulative potential | Ingredient | Bioaccumulation | |---|-----------------------| | bisphenol A/ diglycidyl ether resin, liquid | LOW (LogKOW = 2.6835) | | toluene | LOW (BCF = 90) | ## Mobility in soil | Ingredient | Mobility | |---|-------------------| | bisphenol A/ diglycidyl ether resin, liquid | LOW (KOC = 51.43) | | toluene | LOW (KOC = 268) | ## **SECTION 13 DISPOSAL CONSIDERATIONS** ## Waste treatment methods - ► Containers may still present a
chemical hazard/ danger when empty. - ► Return to supplier for reuse/ recycling if possible. # Product / Packaging disposal Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some # Page 12 of 14 Carboguard 690GF Part A Issue Date: **06/04/2017**Print Date: **06/04/2017** areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ► Reduction - ▶ Reuse - ▶ Recvcling - ▶ Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ## **SECTION 14 TRANSPORT INFORMATION** ## **Labels Required** | Marine Pollutant | |------------------| | HAZCHEM | •3Y 1263 #### Land transport (ADG) | UN | proper | shipping | name | |----|--------|----------|------| PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) ## Transport hazard class(es) | Class | 3 | |---------|----------------| | Subrisk | Not Applicable | ## Packing group **UN** number Not Applicable # Environmental hazard Special provisions 163 223 367 ## Special precautions for user Limited quantity 5 L ## Air transport (ICAO-IATA / DGR) | UN proper shipping name | Pa | |-------------------------|----| IIN number Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds) # Transport hazard class(es) | ICAO/IATA Class | 3 | |---------------------|----------------| | ICAO / IATA Subrisk | Not Applicable | | EPG Code | ગ | ## Packing group | || ## **Environmental hazard** Not Applicable # Special precautions for user | Not Applicable | | | |---|-------------|--| | Special provisions | A3 A72 A192 | | | Cargo Only Packing Instructions | 366 | | | Cargo Only Maximum Qty / Pack | 220 L | | | Passenger and Cargo Packing Instructions | 355 | | | Passenger and Cargo Maximum Qty / Pack | 60 L | | | Passenger and Cargo Limited Quantity Packing Instructions | Y344 | | | Passenger and Cargo Limited Maximum Qty / Pack | 10 L | | ## Sea transport (IMDG-Code / GGVSee) | UN number | 1263 | | |----------------------------|--|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac solutions, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | Chemwatch: 9-93919 Page 13 of 14 Version No: 3.9 ## Carboguard 690GF Part A Issue Date: **06/04/2017**Print Date: **06/04/2017** | Packing group | III | | |------------------------------|---|--| | Environmental hazard | Not Applicable | | | Special precautions for user | EMS Number F-E, S-E Special provisions 163 223 367 955 Limited Quantities 5 L | | ## Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ## **SECTION 15 REGULATORY INFORMATION** ## Safety, health and environmental regulations / legislation specific for the substance or mixture BISPHENOL A/ DIGLYCIDYL ETHER RESIN, LIQUID(25068-38-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Substances Information System - Consolidated Lists Australia Inventory of Chemical Substances (AICS) ## TOLUENE(108-88-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs ## ALUMINIUM HYDROXIDE(21645-51-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS | Australia Exposure Standards | International Agency for Research on Cancer (IARC) - Agents Classified by the IARC | |---|--| | Australia Inventory of Chemical Substances (AICS) | Monographs | | National Inventory | Status | | |----------------------------------|---|--| | Australia - AICS | Υ | | | Canada - DSL | Υ | | | Canada - NDSL | N (toluene; bisphenol A/ diglycidyl ether resin, liquid; aluminium hydroxide) | | | China - IECSC | Υ | | | Europe - EINEC / ELINCS /
NLP | Y | | | Japan - ENCS | N (bisphenol A/ diglycidyl ether resin, liquid) | | | Korea - KECI | Y | | | New Zealand - NZIoC | Υ | | | Philippines - PICCS | Y | | | USA - TSCA | Υ | | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | ## **SECTION 16 OTHER INFORMATION** ## Other information ## Ingredients with multiple cas numbers | Name | CAS No | |---|--| | bisphenol A/ diglycidyl ether resin, liquid | 25068-38-6, 25085-99-8 | | aluminium hydroxide | 21645-51-2, 1330-44-5, 1302-29-0, 12252-70-9, 51330-22-4 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ## **Definitions and abbreviations** Chemwatch: 9-93919 Page 14 of 14 Issue Date: 06/04/2017 Version No: 3.9 Print Date: 06/04/2017 # Carboguard 690GF Part A PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL: No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. # Carboguard 690 Part B ## **RESENE PAINTS AUSTRALIA** Version No: **2.5**Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: **15/01/2015** Print Date: **08/02/2017** S.GHS.AUS.EN ## SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING ## **Product Identifier** | Product name | Carboguard 690 Part B | | |--|-----------------------|--| | Synonyms Not Available | | | | Proper shipping name PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIA thinning or reducing compound) | | | | Other means of identification | Not Available | | ## Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Part B of a two pack epoxy coating | |--------------------------|------------------------------------|
--------------------------|------------------------------------| ## Details of the supplier of the safety data sheet | RESENE PAINTS AUSTRALIA | |---| | 7 Production Ave, Molendinar QLD 4214 Australia | | +61 7 55126600 | | +61 7 55126697 | | Not Available | | Not Available | | | ## Emergency telephone number | Association / Organ | nisation | Not Available | |----------------------|------------------|---------------| | Emergency tele | ephone
umbers | 131126 | | Other emergency tele | ephone
umbers | Not Available | ## CHEMWATCH EMERGENCY RESPONSE | Primary Number | Alternative Number 1 | Alternative Number 2 | |----------------|----------------------|----------------------| | 1800 039 008 | 1800 039 008 | +612 9186 1132 | Once connected and if the message is not in your prefered language then please dial 01 ## **SECTION 2 HAZARDS IDENTIFICATION** ## Classification of the substance or mixture ## HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. | Poisons Schedule | Not Applicable | |-------------------------------|---| | Classification ^[1] | Acute Toxicity (Oral) Category 4, Flammable Liquid Category 3, Respiratory Sensitizer Category 1A, Serious Eye Damage Category 1, Skin Corrosion/Irritation Category 2, Skin Sensitizer Category 1, Specific target organ toxicity - repeated exposure Category 2 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | ## Label elements GHS label elements SIGNAL WORD DANGER ## Hazard statement(s) | Tital di | | | | | |--|--|--|--|--| | H302 | Harmful if swallowed. | | | | | H226 | Flammable liquid and vapour. | | | | | H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled. | | | | Chemwatch: 9-93925 Page 2 of 16 Version No: 2.5 Carboguard 690 Part B | H318 | Causes serious eye damage. | |------|--| | H315 | Causes skin irritation. | | H317 | May cause an allergic skin reaction. | | H373 | May cause damage to organs through prolonged or repeated exposure. | ## Supplementary statement(s) Not Applicable ## Precautionary statement(s) Prevention | P210 | Keep away from heat/sparks/open flames/hot surfaces No smoking. | |------|---| | P233 | Keep container tightly closed. | | P260 | Do not breathe dust/fume/gas/mist/vapours/spray. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | P285 | In case of inadequate ventilation wear respiratory protection. | | P240 | Ground/bond container and receiving equipment. | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P242 | Use only non-sparking tools. | | P243 | Take precautionary measures against static discharge. | | P270 | Do not eat, drink or smoke when using this product. | | P272 | Contaminated work clothing should not be allowed out of the workplace. | ## Precautionary statement(s) Response | P304+P340 | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | |----------------|--| | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P310 | Immediately call a POISON CENTER or doctor/physician. | | P342+P311 | If experiencing respiratory symptoms: Call a POISON CENTER or doctor/physician. | | P362 | Take off contaminated clothing and wash before reuse. | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam for extinction. | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | P301+P312 | IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. | | P303+P361+P353 | IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | | P330 | Rinse mouth. | | | | ## Precautionary statement(s) Storage P403+P235 Store in a well-ventilated place. Keep cool. ## Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. ## **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** ## Substances See section below for composition of Mixtures ## Mixtures | CAS No | %[weight] | Name | |------------|-----------|--| | 1330-20-7 | 20-30 | xylene | | 71-36-3 | 1-10 | n-butanol | | 107-15-3 | <=1 | <u>ethylenediamine</u> | | 111-40-0 | <=1 | <u>diethylenetriamine</u> | | 68413-28-5 | >=70 | cashew nut liquid/ formaldehyde/ ethylenediamine polymer | | 90-72-2 | 1-10 | 2,4,6-tris[(dimethylamino)methyl]phenol | ## **SECTION 4 FIRST AID MEASURES** Eye Contact ## Description of first aid measures If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. ▶ Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - ▶ Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. - ► Transport to hospital or doctor without delay. - ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Issue Date: 15/01/2015 Print Date: 08/02/2017 Version No: 2.5 Carboquard 690 Part B | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | |--------------|---| | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. | #### Indication of any immediate medical attention and special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. To treat poisoning by the higher aliphatic alcohols (up to C7): - ▶ Gastric lavage with copious amounts of water. - It may be beneficial to instill 60 ml of mineral oil into the stomach. - Oxygen and artificial respiration as needed. - Electrolyte balance: it may be useful to start 500 ml. M/6 sodium bicarbonate intravenously but maintain a cautious and conservative attitude toward electrolyte replacement unless shock or severe acidosis threatens. - ▶ To protect the liver, maintain carbohydrate intake by intravenous infusions of glucose. - ▶ Haemodialysis if coma is deep and persistent. [GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, Ed 5) BASIC TREATMENT - ► Establish a patent airway with suction where necessary. - Watch for signs of respiratory insufficiency and assist ventilation as necessary. - Administer oxygen by non-rebreather mask at 10 to 15 l/min. - Monitor and treat, where necessary, for shock. - Monitor and treat, where necessary, for pulmonary oedema. - Anticipate and treat, where necessary, for seizures. - ▶ DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool. - Give activated charcoal. ADVANCED TREATMENT ADVANCED TREATMENT - ▶ Consider orotracheal or nasotracheal intubation for airway control in
unconscious patient or where respiratory arrest has occurred. - ► Positive-pressure ventilation using a bag-valve mask might be of use. - Monitor and treat, where necessary, for arrhythmias. - ▶ Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications. - ► If the patient is hypoglycaemic (decreased or loss of consciousness, tachycardia, pallor, dilated pupils, diaphoresis and/or dextrose strip or glucometer readings below 50 mg), give 50% dextrose. - Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications. - Drug therapy should be considered for pulmonary oedema. - Treat seizures with diazepam. - ▶ Proparacaine hydrochloride should be used to assist eye irrigation. EMERGENCY DEPARTMENT ------ - Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph. - Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome. - Acidosis may respond to hyperventilation and bicarbonate therapy. - Haemodialysis might be considered in patients with severe intoxication. - ▶ Consult a toxicologist as necessary. BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994 For C8 alcohols and above. Symptomatic and supportive therapy is advised in managing patients. For acute or short term repeated exposures to xylene: - Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal. - Pulmonary absorption is rapid with about 60-65% retained at rest. - Primary threat to life from ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. BIOLOGICAL EXPOSURE INDEX - BEI These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Determinant Methylhippu-ric acids in urine Index 1.5 gm/gm creatinine 2 mg/min Sampling Time End of shift Last 4 hrs of shift Comments Issue Date: 15/01/2015 Print Date: 08/02/2017 Chemwatch: 9-93925 Page 4 of 16 Issue Date: 15/01/2015 Version No: 2.5 Print Date: 08/02/2017 ## Carboguard 690 Part B **SECTION 5 FIREFIGHTING MEASURES** ## **Extinguishing media** - ▶ Alcohol stable foam. - ► Dry chemical powder. - ▶ BCF (where regulations permit). - ▶ Carbon dioxide. - Water spray or fog Large fires only. ## Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result ## Advice for firefighters | Fire Fighting | | |-----------------------|---| | Fire/Explosion Hazard | Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic furnes of carbon monoxide (CO). Combustion products include: , carbon dioxide (CO2) , carbon monoxide (CO) , introgen oxides (NOx) , other pyrolysis products typical of burning organic material. | | HAZCHEM | €Y | ## **SECTION 6 ACCIDENTAL RELEASE MEASURES** ## Personal precautions, protective equipment and emergency procedures See section 8 ## **Environmental precautions** See section 12 ## Methods and material for containment and cleaning up | | ▶ Remove all ignition sources. | |--------------|---| | | ► Clean up all spills immediately. | | | Avoid breathing vapours and contact with skin and eyes. | | Minor Spills | Control personal contact with the substance, by using protective equipment. | | | Contain and absorb small quantities with vermiculite or other absorbent material. | | | ▶ Wipe up. | | | ► Collect residues in a flammable waste container. | | | ► Clear area of personnel and move upwind. | | | Alert Fire Brigade and tell them location and nature of hazard. | | | Wear breathing apparatus plus protective gloves. | | | ▶ Prevent, by any means available, spillage from entering drains or water course. | | | ▶ Stop leak if safe to do so. | | Maion Cuille | ► Contain spill with sand, earth or vermiculite. | | Major Spills | Collect recoverable product into labelled containers for recycling. | | | ▶ Neutralise/decontaminate residue (see Section 13 for specific agent). | | | ▶ Collect solid residues and seal in labelled drums for disposal. | | | ► Wash area and prevent runoff into drains. | | | After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. | | | ► If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. ## **SECTION 7 HANDLING AND STORAGE** Safe handling ## Precautions for safe handling - ► Containers, even those that have been emptied, may contain explosive vapours. - Do NOT cut, drill, grind, weld or perform similar operations on or near containers. DO NOT allow clothing wet with material to stay in contact with skin - ▶ Electrostatic discharge may be generated during pumping this may result in fire. - Ensure electrical continuity by bonding and grounding (earthing) all equipment. - Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then - <= 7 m/sec). Avoid splash filling. - ▶ Do NOT use compressed air for filling discharging or handling operations. - Avoid all personal contact, including inhalation. - ▶ Wear protective clothing when risk of overexposure occurs. Chemwatch: 9-93925 Page 5 of 16 Issue Date: 15/01/2015 Version No: 2.5 Print Date: 08/02/2017 Carboguard 690 Part B Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid generation of static electricity. DO NOT use plastic buckets - Earth all lines and equipment. Use spark-free tools when handling. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - Store in original containers in approved flammable liquid storage area. - Store away from incompatible materials in a cool, dry, well-ventilated area. - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - No smoking, naked lights, heat or ignition sources. - ▶ Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access - Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. - Use
non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. - ▶ Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors - Keep adsorbents for leaks and spills readily available. - ▶ Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): - ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - ▶ Storage tanks should be above ground and diked to hold entire contents #### Conditions for safe storage, including any incompatibilities - ▶ Packing as supplied by manufacturer. Plastic containers may only be used if approved for flammable liquid. - Check that containers are clearly labelled and free from leaks - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure - For materials with a viscosity of at least 2680 cSt. (23 deg. C) Suitable container - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. ## Xylenes: - ▶ may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride - attack some plastics, rubber and coatings - may generate electrostatic charges on flow or agitation due to low conductivity. - Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents. - Aromatics can react exothermically with bases and with diazo compounds ## Storage incompatibility Other information ## Alcohols - are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents. - reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen - react with strong acids, strong caustics, aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium - should not be heated above 49 deg. C. when in contact with aluminium equipment - Must not be stored togethe - 0 - May be stored together with specific preventions ## **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** ## Control parameters ## OCCUPATIONAL EXPOSURE LIMITS (OEL) ## INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|------------|-----------------------------|--------------------|---------------------|---------------|---------------| | Australia Exposure Standards | xylene | Xylene (o-, m-, p- isomers) | 350 mg/m3 / 80 ppm | 655 mg/m3 / 150 ppm | Not Available | Not Available | Chemwatch: 9-93925 Page 6 of 16 Issue Date: 15/01/2015 Version No: 2.5 Print Date: 08/02/2017 ## Carboguard 690 Part B | Australia Exposure Standards | n-butanol | n-Butyl alcohol | Not Available | Not Available | 152 mg/m3 / 50 ppm | Sk | |------------------------------|--------------------|---------------------|-------------------|---------------|--------------------|-----| | Australia Exposure Standards | ethylenediamine | Ethylenediamine | 25 mg/m3 / 10 ppm | Not Available | Not Available | Sen | | Australia Exposure Standards | diethylenetriamine | Diethylene triamine | 4.2 mg/m3 / 1 ppm | Not Available | Not Available | Sk | ## EMERGENCY LIMITS | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---|---|---------------|---------------|---------------| | xylene | Xylenes | Not Available | Not Available | Not Available | | n-butanol | Butyl alcohol, n-; (n-Butanol) | 60 ppm | 800 ppm | 8000 ppm | | ethylenediamine | Ethylenediamine, 1,2- | 0.88 ppm | Not Available | Not Available | | diethylenetriamine | Diethylenetriamine | 3 ppm | 8.5 ppm | 51 ppm | | 2,4,6-
tris[(dimethylamino)methyl]phenol | Tris(dimethylaminomethyl)phenol, 2,4,6- | 3.6 mg/m3 | 40 mg/m3 | 240 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|-----------------| | xylene | 1,000 ppm | 900 ppm | | n-butanol | 8,000 ppm | 1,400 [LEL] ppm | | ethylenediamine | 2,000 ppm | 1,000 ppm | | diethylenetriamine | Not Available | Not Available | | cashew nut liquid/ formaldehyde/
ethylenediamine polymer | Not Available | Not Available | | 2,4,6-
tris[(dimethylamino)methyl]phenol | Not Available | Not Available | #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100
f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ## Personal protection ## r ersonai protectioi - ► Safety glasses with side shields - Chemical goggles. ## Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately
and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH ## Carboquard 690 Part B #### Skin protection ► Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### See Hand protection below Wear safety footwear or safety gumboots, e.g. Rubber ▶ Wear chemical protective gloves, e.g. PVC. #### NOTE: - ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity #### Hands/feet protection Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. ## **Body protection** Other protection ## See Other protection below ## Overalls - PVC Apron. - ▶ PVC protective suit may be required if exposure severe - ► Eyewash unit. - ▶ Ensure there is ready access to a safety shower. - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. ## Thermal hazards Not Available ## Recommended material(s) ## **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computergenerated selection: Carboguard 690 Part B | Material | СРІ | |-------------------|-----| | BUTYL | С | | BUTYL/NEOPRENE | С | | IYPALON | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | IEOPRENE | С | | NEOPRENE/NATURAL | С | | IITRILE | С | | NITRILE+PVC | С | | E | С | | PE/EVAL/PE | С | ## Respiratory protection Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|-----------------------------| | up to 10 x ES | AK-AUS P2 | - | AK-PAPR-AUS /
Class 1 P2 | | up to 50 x ES | - | AK-AUS / Class
1 P2 | - | | up to 100 x ES | - | AK-2 P2 | AK-PAPR-2 P2 ^ | ## ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate ## Carboguard 690 Part B | PVA | С | |--------------|---| | PVC | С | | PVDC/PE/PVDC | С | | SARANEX-23 | С | | TEFLON | С | | VITON | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection - B: Satisfactory; may degrade after 4 hours continuous immersion - C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. ## **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** ## Information on basic physical and chemical properties | Appearance | Clear Characteristic | | | |--|----------------------|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | 0.98 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | 80 - 207 | Molecular weight (g/mol) | Not Available | | Flash point (°C) | 27 | Taste | Not Available | | Evaporation rate | 0.7 BuAC = 1 | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 11.2 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 1.0 | Volatile Component (%vol) | 28 | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | >1 | VOC g/L | Not Available | ## **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ## **SECTION 11 TOXICOLOGICAL INFORMATION** ## Information on toxicological
effects The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Inhalation of epoxy resin amine hardeners (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting several days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". Exposure to n-butanol causes dose dependent irritation and headaches in humans, but CNS depression and prostration in mice. Though the offensive odour Inhaled Xylene is a central nervous system depressant may forewarn, the smell sense may become fatigued. Aliphatic alcohols with more than 3-carbons cause headache, dizziness, drowsiness, muscle weakness and delirium, central depression, coma, seizures and behavioural changes. Secondary respiratory depression and failure, as well as low blood pressure and irregular heart rhythms, may follow. Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Chemwatch: 9-93925 Page 9 of 16 Issue Date: 15/01/2015 Version No: 2.5 Print Date: 08/02/2017 ## Carboguard 690 Part B Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual Overexposure to non-ring alcohols causes nervous system symptoms. These include headache, muscle weakness and inco-ordination, giddiness, confusion, delirium and coma. Ingestion Ingestion of amine epoxy-curing agents (hardeners) may cause severe abdominal pain, nausea, vomiting or diarrhoea. The vomitus may contain blood and mucous. Swallowing of n-butanol may cause breathing difficulties, headache, nausea, vomiting, irritation of the airway and mucous membranes as well as depression of the central nervous system. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. **Skin Contact** Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man. Toxic effects may result from skin absorption Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. If applied to the eyes, this material causes severe eye damage. Eye N-butanol can cause eye damage, burning sensation, blurring of vision, excessive tear formation and discomfort to bright light. Inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Harmful: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects Chronic Based on experience with animal studies, exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother. Hearing and balance loss have been reported with exposure to n-butanol, especially with concomitant long term unprotected exposure to high noise. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity. | | TOXICITY | IRRITATION | |-----------------------------------|---|------------------------------------| | Carboguard 690 Part B | Not Available | Not Available | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >1700 mg/kg ^[2] | Eye (human): 200 ppm irritant | | xylene | Inhalation (rat) LC50: 5000 ppm/4hr ^[2] | Eye (rabbit): 5 mg/24h SEVERE | | | Oral (rat) LD50: 4300 mg/kg ^[2] | Eye (rabbit): 87 mg mild | | | | Skin (rabbit):500 mg/24h moderate | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 3434.4 mg/kg ^[1] | Eye (human): 50 ppm - irritant | | n-butanol | Inhalation (rat) LC50: 24 mg/L/4hr ^[2] | Eye (rabbit): 1.6 mg-SEVERE | | | Inhalation (rat) LC50: 8000 ppm/4hr ^[2] | Eye (rabbit): 24 mg/24h-SEVERE | | | Oral (rat) LD50: 2292.3 mg/kg ^[1] | Skin (rabbit): 405 mg/24h-moderate | | | TOXICITY | IRRITATION | | | dermal (rat) LD50: ca.1000 mg/kg ^[1] | Eye (rabbit):0.67 mg SEVERE | | ethylenediamine | Inhalation (mouse) LC50: 0.3 mg/L/4hr ^[2] | Eye (rabbit):0.75mg/24h SEVERE | | | Oral (rat) LD50: 500 mg/kg ^[2] | Skin(rabbit):10 mg/24h open SEVERE | | | | Skin(rabbit):450 mg open moderate | | | TOXICITY | IRRITATION | | diethylenetriamine | Dermal (rabbit) LD50: ca.678.013 mg/kg ^[1] | Skin (rabbit): 10 mg/24h - SEVERE | | | Oral (rat) LD50: ca.1.2 ^[1] | Skin (rabbit):500 mg open moderate | | cashew nut liquid/ formaldehyde/ | TOXICITY | IRRITATION | | ethylenediamine polymer | Oral (rat) LD50: 1080 mg/kg ^[2] | Not Available | | | TOXICITY | IRRITATION | | 2,4,6- | dermal (rat) LD50: >973 mg/kg ^[1] | Eye (rabbit): 0.05 mg/24h - SEVERE | | tris[(dimethylamino)methyl]phenol | Inhalation (rat) LC50: >0.5 mg/l/1 hr ^[2] | Skin (rabbit): 2 mg/24h - SEVERE | | | Oral (rat) LD50: 1200 mg/kg ^[2] | | Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances Chemwatch: 9-93925 Page 10 of 16 Issue Date: 15/01/2015 Version No: 2.5 Print Date: 08/02/2017 ## Carboguard 690 Part B The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. **XYLENE** Evidence of carcinogenicity may be inadequate or limited in animal testing. Reproductive effector in rats for n-butanol Acute toxicity: n-Butanol (BA) was only slightly toxic to experimental animals following acute oral, dermal, or inhalation exposure. The acute oral LD50 values for female rats ranged from 790 to 4360 mg/kg. Different strains of rat were used in each of four studies, which may account for the variability. Oral LD50 values for mice, rabbits, hamsters, dogs, and male rats all fell within the same range. The rat inhalation LC0 of 8000 ppm (24000 mg/m3) indicates very low inhalation toxicity (no lethality at 8000 ppm). The rabbit dermal LD50 was 3402 mg/kg, indicating that BA can penetrate the skin, but not very readily. Animal experiments and human experience indicate that BA is, at most, moderately irritating to the skin, but it is a severe eye irritant. These effects are most likely due to BAs localised defatting and drying characteristics. Although no animal data are available, human studies and experience show that BA is not likely to be a skin sensitiser. The median odor threshold for BA (0.17 ppm) is well below the lowest nasal irritation threshold in humans (289 ppm), allowing warning of possible chemical exposure prior to nasal irritation occurring. Human studies are complicated by the odor characteristics of the material, as the odor threshold is well below the levels at which irritation is observed. Repeat dose toxicity: An in vivo toxicokinetics study confirmed the rapid metabolism of n-butyl acetate (BAc) to BA. Hydrolysis of BAc in blood and brain was estimated to be 99 percent complete within 2.7 minutes (elimination t1/2 = 0.41 minute). Thus, organisms exposed to BAc can experience appreciable tissue concentrations of BA. In this way, the results of toxicity studies with BAc can be used as supplemental, surrogate N-BUTANOL data to provide information on the toxicity of BA. A thirteen-week, subchronic exposure to BAc, the metabolic precursor of BA, produced transient hypoactivity (during exposure only) at 1500 and 3000 ppm (7185 and 14370 mg/m3) along with decreased body weight and food consumption, but no post exposure neurotoxicity even at 3000 ppm. A concurrent subchronic neurotoxicity study under the same exposure conditions showed no evidence of cumulative neurotoxicity based upon functional observational battery endpoints, quantitative motor activity, neuropathology and scheduled-controlled operant behavior endpoints. A no observable effect level (NOAEL) of 500 ppm (2395 mg/m3) was reported for systemic effects in rats, and a NOAEL of 3000 ppm (14370 mg/m3) was reported for post exposure neurotoxicity in rats. Reproductive toxicity: Several studies indicate that BA is not a reproductive toxicant. Female rats exposed to 6000 ppm (18000 mg/m3) BA throughout gestation and male rats exposed to 6000 ppm (18000
mg/m3) BA for six weeks prior to mating showed no effects on fertility or pregnancy rate. Male rats given BA at 533 mg/kg/day for 5 days had no testicular toxicity. Developmental toxicity: BA produced only mild foetotoxicity and developmental alterations at or near the maternally toxic (even lethal) dose of 8000 ppm (24000 mg/m3) throughout gestation. Genotoxicity: An entire battery of negative in vitro tests and a negative in vivo micronucleus test indicate that BA is not genotoxic. Carcinogenicity: Based upon the battery of negative mutagenicity and clastogenicity findings, BA presents a very small potential for carcinogenicity Acute toxicity of ethylenediamine (EDA) is considered to be low to moderate. In animal testing, it affected the eyes (causing clouding of the lens and atrophy of the retina) and kidneys. EDA is also capable of causing hypersensitivity to the airway and asthma in the work environment, although the levels required for this to occur are not known. EDA is corrosive to the skin and eyes due to its high alkalinity. It sensitises the skin and airways in humans and cross-sensitisation can occur with chemicals that are structurally similar. Weight loss has been reported in animal testing. Evidence generally shows that ethylenediamine is unlikely to cause genetic, developmental or reproductive damage. Acute toxicity of ethylenediamine (LD50, rat, oral range from 637 mg/kg to 1850 mg/kg; LC50, rat, inhalation >29 mg/l and LD50, rabbit, dermal 560 mg/kg) is considered to be low to moderate. Due to the high alkalinity, ethylenediamine is corrosive to the skin and eyes. It is a dermal and respiratory sensitiser in humans and has been reported to cross-sensitize for chemicals of similar structure. In repeat dose studies, decreased body weight along with decreased water and feed consumption were observed. Every attempt was made to minimise the **ETHYLENEDIAMINE** irritating nature of EDA and reduce the pH by using EDA-2HCL. Hepatocellular pleomorphism was noted in every study following dietary administration of longer than 13 weeks duration. Gavage administration resulted in effects in the eyes and kidneys. Kidney effects consisted of degenerative and regenerative changes in the tubular epithelium. The Lowest-Observable-Adverse-Effect -Level (LOAEL) is 100 mg/kg/day with a No-Observable-Effect-Level (NOEL) of 20 mg/kg/day observed in the chronic dietary feeding study. Ethylenediamine was rapidly excreted with most of the material eliminated in the urine within 24 hours. Ethylenediamine has produced weakly positive results, 2-3 times greater than control values, in several Ames tests, which may or may not be related to an impurity. Subsequent studies conducted with purer material were negative. All other tests including several in vitro assays (CHO gene mutation, sister chromatid exchange with CHO cells and UDS with primary rat hepatocytes) and a rat dominant lethal assay were negative. The weight of evidence from both in vitro and in vivo tests indicates that ethylenediamine is unlikely to be genotoxic. In chronic bioassays via two routes of exposure there was no carcinogenic effect. In developmental toxicity studies, growth retardation was noted at maternally toxic levels. However, there was no evidence of developmental toxicity at maternally toxic doses when compared with a pair-fed control. There was no effect on reproductive parameters at levels, which produced parental toxicity. Ethyleneamines are very reactive and can cause chemical burns, skin rashes and asthma-like symptoms. It is readily absorbed through the skin and may cause eye blindness and irreparable damage. As such, they require careful handling. In general, the low-molecular weight polyamines have been positive in the Ames assay (for genetic damage); however, this is probably due to their ability to chelate copper. DIETHYLENETRIAMINE For alkyl polyamines: The alkyl polyamines cluster consists of two terminal primary and at least one secondary amine groups and are derivatives of low molecular weight ethylenediamine, propylenediamine or hexanediamine. Toxicity depends on route of exposure. Cluster members have been shown to cause skin irritation or sensitisation, eye irritation and genetic defects, but have not been shown to cause cancer. For cashew nutshell liquid (test substance Cardolite NX 4708 (distilled cashew nut shell liquid) No oestrogenic activity was observed at all concentrations tested. The substance was found to be non-mutagenic Skin reactions observed after intradermal induction: Well-defined erythema (grade 2) was commonly noted at the intradermal injection sites at the 24-hour observation. Incidents of moderate to severe erythema were also noted at this time. Well-defined erythema persisted at all intradermal injection sites at the 48-hour observation. Skin reactions observed after topical induction: Very slight or well-defined erythema (grades 1 or 2) with or without very slight oedema (grade 1), was commonly noted at the topical induction sites at the 1-hour observation. Incidents of fissuring of the skin, or bleeding were also noted **CASHEW NUT LIQUID/ FORMALDEHYDE/** at this time. The bleeding was probably caused by self-inflicted scratching of the skin. ETHYLENEDIAMINE POLYMER Skin reactions observed after topical challenge with 5% v/v Cardolite NC-700: Very slight or well-defined erythema (grade 1 or 2) was noted at the challenge sites of eleven animals at the 24-hour observation. Very slight oedema (grade 1) was also noted at five of these sites at this observation. Very slight erythema (grade 1) was noted at the challenge sites of 14 animals at the 48-hour observation, with very slight oedema Desquamation was seen at the challenge sites of seven animals. No evidence of erythema or oedema was seen at the 72-hour observation, Skin reactions observed after topical challenge with 2% v/v Cardolite NC-700: Very slight or well-defined erythema (grade 1 or 2) was noted at the challenge sited of six animals at the 24-hour observation. Very slight oedema (grade 1) was also noted at one of these sites at this observation. Very slight erythema (grade 1) was noted at the challenge sited of five animals at the 48-hour observation. No skin reactions were noted at the challenge sites of two of these animals at the 24-hour observation. Desquamation was noted at one challenge site at the although the presence of desquamation precluded evaluation of erythema at the challenge sites of none animals at this time (grade 1) at two of these sites. Chemwatch: 9-93925 Page 11 of 16 Issue Date: 15/01/2015 Version No: 2.5 Print Date: 08/02/2017 #### Carboquard 690 Part B 48-hour observation. Very slight erythema (grade 1) persisted at the challenge site of one animal at the 72-hour observation. Desquamation was noted at the challenge sites of three animals at this time. Clinical observations: All animals showed an expected gain in bodyweight over the study period. No signs of ill-health were noted in any animal CONCLUSIONS Remarks: Cardolite NC-700 produced a 70% (14/20) sensitisation rate in this study and was classified as a strong sensitiser While it is difficult to generalise about the full range of potential health effects posed by exposure to the many different amine compounds, characterised by those used in the manufacture of polyurethane and polyisocyanurate foams, it is agreed that overexposure to the majority of these materials may cause adverse health effects. Many amine-based compounds can induce histamine liberation, which, in turn, can trigger allergic and other physiological effects, including bronchoconstriction or bronchial asthma and rhinitis. Systemic symptoms include headache, nausea, faintness, anxiety, a decrease in blood pressure, tachycardia (rapid heartbeat), itching, erythema (reddening of the skin), urticaria (hives), and facial edema (swelling). Systemic effects (those affecting the body) that are related to the pharmacological action of amines are usually transient. Typically, there are four routes of possible or potential exposure: inhalation, skin contact, eye contact, and ingestion. Inhalation: Inhalation of vapors may, depending upon the physical and chemical properties of the specific product and the degree and length of exposure, result in moderate to severe irritation of the tissues of the nose and throat and can irritate the lungs Products with higher vapour pressures have a greater potential for higher airborne concentrations. This increases the probability of worker exposure. Higher concentrations of certain amines can produce severe respiratory irritation, characterised by nasal discharge, coughing, difficulty in breathing, and chest pains Chronic exposure via inhalation may cause headache, nausea, vomiting, drowsiness, sore throat, bronchopneumonia, and possible lung damage. Also, repeated and/or prolonged exposure to some amines may result in liver disorders, jaundice, and liver enlargement. Some amines have been shown to cause kidney, blood, and central nervous system disorders in laboratory animal studies While most polyurethane amine catalysts are not sensitisers, some certain individuals may also become sensitized to amines and may $experience\ respiratory\ distress, including\ asthma-like\ attacks, whenever\ they\ are\ subsequently\ exposed\ to\ even\ very\ small\ amounts\ of\ vapor.$ Once sensitised, these individuals must avoid any further exposure to amines. Although chronic or repeated inhalation of vapor concentrations below hazardous or recommended exposure limits should not ordinarily affect healthy individuals, chronic overexposure may lead to permanent pulmonary injury, including a reduction in lung function, breathlessness, chronic bronchitis, and immunologic lung disease. Inhalation hazards are increased when exposure to amine catalysts occurs in situations that produce aerosols, mists, or heated vapors, Such situations include leaks in fitting or transfer lines. Medical
conditions generally aggravated by inhalation exposure include asthma, TRIS[(DIMETHYLAMINO)METHYL]PHENOL bronchitis, and emphysema. Skin Contact: Skin contact with amine catalysts poses a number of concerns. Direct skin contact can cause moderate to severe irritation and injury-i.e., from simple redness and swelling to painful blistering, ulceration, and chemical burns. Repeated or prolonged exposure may also result in severe cumulative dermatitis Skin contact with some amines may result in allergic sensitisation. Sensitised persons should avoid all contact with amine catalysts. Systemic effects resulting from the absorption of the amines through skin exposure may include headaches, nausea, faintness, anxiety, decrease in blood pressure, reddening of the skin, hives, and facial swelling. These symptoms may be related to the pharmacological action of the amines, and they are usually transient. **Eve Contact:** Amine catalysts are alkaline in nature and their vapours are irritating to the eyes, even at low concentrations. Direct contact with the liquid amine may cause severe irritation and tissue injury, and the "burning" may lead to blindness. (Contact with solid products may result in mechanical irritation, pain, and corneal injury.) Exposed persons may experience excessive tearing, burning, conjunctivitis, and corneal swelling. The comeal swelling may manifest itself in visual disturbances such as blurred or "foggy" vision with a blue tint ("blue haze") and sometimes a halo phenomenon around lights. These symptoms are transient and usually disappear when exposure ceases. Some individuals may experience this effect even when exposed to concentrations below doses that ordinarily cause respiratory irritation. Ingestion: The oral toxicity of amine catalysts varies from moderately to very toxic. Some amines can cause severe irritation, ulceration, or burns of the mouth, throat, esophagus, and gastrointestinal tract. Material aspirated (due to vomiting) can damage the bronchial tubes and the lungs. Affected persons also may experience pain in the chest or abdomen, nausea, bleeding of the throat and the gastrointestinal tract, diarrhea, dizziness, drowsiness, thirst, circulatory collapse, coma, and even death. Polyurethane Amine Catalysts: Guidelines for Safe Handling and Disposal; Technical Bulletin June 2000 Alliance for Polyurethanes Industry The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact Carboguard 690 Part B & urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation **ETHYLENEDIAMINE &** potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which DIETHYLENETRIAMINE is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested Allergic reactions involving the respiratory tract are usually due to interactions between IgE antibodies and allergens and occur rapidly. Carboquard 690 Part B & Allergic potential of the allergen and period of exposure often determine the severity of symptoms. Some people may be genetically more **ETHYLENEDIAMINE** prone than others, and exposure to other irritants may aggravate symptoms. Allergy causing activity is due to interactions with proteins. Carboguard 690 Part B & Attention should be paid to atopic diathesis, characterised by increased susceptibility to nasal inflammation, asthma and eczema. **ETHYLENEDIAMINE** Carboguard 690 Part B & Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T ETHYLENEDIAMINE lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure. Carboguard 690 Part B & CASHEW NUT LIQUID/ FORMALDEHYDE/ No significant acute toxicological data identified in literature search. **ETHYLENEDIAMINE POLYMER & 2.4.6-**TRIS[(DIMETHYLAMINO)METHYL]PHENOL Carboguard 690 Part B & XYLENE & N-BUTANOL & ETHYLENEDIAMINE & The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may **DIETHYLENETRIAMINE & 2,4,6**produce conjunctivitis. TRIS[(DIMETHYLAMINO)METHYL]PHENOL The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the **XYLENE & N-BUTANOL** production of vesicles, scaling and thickening of the skin. Chemwatch: 9-93925 Page 12 of 16 Issue Date: 15/01/2015 Version No: 2.5 Print Date: 08/02/2017 ## Carboguard 690 Part B N-BUTANOL & ETHYLENEDIAMINE & DIETHYLENETRIAMINE & 2,4,6-TRIS[(DIMETHYLAMINO)METHYL]PHENOL Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. ETHYLENEDIAMINE & DIETHYLENETRIAMINE & 2,4,6-TRIS[(DIMETHYLAMINO)METHYL]PHENOL The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Repeated exposures may produce severe ulceration. | Acute Toxicity | ✓ | Carcinogenicity | 0 | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | 0 | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | 0 | | Respiratory or Skin sensitisation | ~ | STOT - Repeated Exposure | ✓ | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: X – Data available but does not fill the criteria for classification ✓ – Data available to make classification O – Data Not Available to make classification ## **SECTION 12 ECOLOGICAL INFORMATION** #### Toxicity | Ingredient | Endpoint | Test Duration (hr) | Species | Value | Source | |---|--|--------------------|-------------------------------|--------------|--------| | xylene | LC50 | 96 | Fish | 2.6mg/L | 2 | | xylene | EC50 | 48 | Crustacea | >3.4mg/L | 2 | | xylene | EC50 | 72 | Algae or other aquatic plants | 4.6mg/L | 2 | | xylene | EC50 | 24 | Crustacea | 0.711mg/L | 4 | | xylene | NOEC | 73 | Algae or other aquatic plants | 0.44mg/L | 2 | | n-butanol | LC50 | 96 | Fish | 88.462mg/L | 3 | | n-butanol | EC50 | 48 | Crustacea | >500mg/L | 1 | | n-butanol | EC50 | 96 | Algae or other aquatic plants | 225mg/L | 2 | | n-butanol | BCF | 24 | Fish | 921mg/L | 4 | | n-butanol | EC50 | 384 | Crustacea | 20.661mg/L | 3 | | n-butanol | NOEC | 48 | Crustacea | 415mg/L | 2 | | ethylenediamine | LC50 | 96 | Fish | 115.7mg/L | 4 | | ethylenediamine | EC50 | 48 | Crustacea | 3mg/L | 1 | | ethylenediamine | EC50 | 96 | Algae or other aquatic plants | 61mg/L | 1 | | ethylenediamine | EC0 | 24 | Crustacea | 1.2mg/L | 1 | | ethylenediamine | NOEC | 504 | Crustacea | 0.16mg/L | 4 | | diethylenetriamine | LC50 | 96 | Fish | 1014mg/L | 4 | | diethylenetriamine | EC50 | 48 | Crustacea | =16mg/L | 1 | | diethylenetriamine | EC50 | 96 | Algae or other aquatic plants | 245.452mg/L | 3 | | diethylenetriamine | EC0 | 48 | Crustacea | =2mg/L | 1 | | diethylenetriamine | NOEC | 504 | Crustacea | =5.6mg/L | 1 | | 2,4,6-
tris[(dimethylamino)methyl]phenol | LC50 | 96 | Fish | 223.143mg/L | 3 | | 2,4,6-
tris[(dimethylamino)methyl]phenol | EC50 | 96 | Algae or other aquatic plants | 34.812mg/L | 3 | | 2,4,6-
tris[(dimethylamino)methyl]phenol | EC50 | 96 | Algae or other aquatic plants | 1616.048mg/L | 3 | | | Extracted from A. III.O.I.D. Toxisis, Date O. Extract EQUA Desistant of Oxford States of Contract Information, Associate Toxisis, O. EDIMINI Oxide | | | | | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data for n-butanol (syn: BA) log Kow: 0.88 Koc: 71.6 Half-life (hr) air : 5-52 Half-life (hr) H2O surface water : 2.4-3022 Henry's atm m3 /mol:
5.57E-06 BOD 5: 1.1-2.04,33% COD: 1.9,92% ThOD: 2.594 ## Carboguard 690 Part B Print Date: 08/02/2017 #### **Environmental fate:** BAs vapor pressure is 0.56 kPa at 200 C, water solubility is 77 g/L at 200 C and a Log Kow is 0.88. Based on level III fugacity modeling, BA will partition 83.5% in air, 5.9% in soil, 10.6% in water, <0.1% in suspended solids, and <0.1% in biota and in sediment. BA degrades in air by reaction with hydroxyl radicals, having a half-life in air of 1.2 to 2.3 days. The volatilisation half-life for BA in water is estimated to be 2.4 hours for streams, 3.9 hours for rivers and 126 days for lakes. BA is classified as "readily biodegradable" under aerobic conditions. The octanol:water partitioning coefficient (log Kow) for BA ranges from 0.88 to 0.97, and the calculated bioconcentration factor (BCF) is 3. These data indicate that BA has a low potential to bioaccumulate. BA is expected to migrate readily through soil to groundwater and not to sorb to soil particles ## Ecotoxicity: BA exhibits low toxicity to fish, amphibians and aquatic invertebrates, plants, algae, bacteria and protozoans. However, some algal species are sensitive to BA. Acute toxicity to aquatic life may occur at concentrations greater than 500 mg/l. For cashew nutshell liquid (test substance Cardolite NX 4708 (distilled cashew nut shell liquid) The two major components of the liquid are cardanol (CAS RN: 37330-39-5), cardol (CAS RN 57486-25-6) Cardanol and cardol are estimated to be toxic to algae, fish and daphnia (ECOSAR v.0.99e) Based on the data (i.e. 96% degradation after 28 days) Cardolite NC-511 can be regarded as very highly biodegradable. #### For Xvlenes: log Koc: 2.05-3.08; Koc: 25.4-204; Half-life (hr) air: 0.24-42; Half-life (hr) H2O surface water: 24-672; Half-life (hr) H2O ground: 336-8640; Half-life (hr) soil: 52-672; Henry's Pa m3 /mol: 637-879; Henry's atm m3 /mol - 7.68E-03; BOD 5 if unstated - 1.4,1%; COD - 2.56,13% ThOD - 3.125 : BCF : 23; log BCF : 1.17-2.41. Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years. Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation, p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2.4-dimethylphenol, 6-nitro-2.4-dimethylphenol, 2.6-dimethylphenol, and 4-nitro-2.6-dimethylphenol, Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-Xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L. DO NOT discharge into sewer or war #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---|-----------------------------|-----------------------------| | xylene | HIGH (Half-life = 360 days) | LOW (Half-life = 1.83 days) | | n-butanol | LOW (Half-life = 54 days) | LOW (Half-life = 3.65 days) | | ethylenediamine | LOW | LOW | | diethylenetriamine | LOW | LOW | | 2,4,6-
tris[(dimethylamino)methyl]phenol | HIGH | HIGH | ## Bioaccumulative potential | Ingredient | Bioaccumulation | |---|----------------------| | xylene | MEDIUM (BCF = 740) | | n-butanol | LOW (BCF = 0.64) | | ethylenediamine | LOW (BCF = 0.07) | | diethylenetriamine | LOW (BCF = 1.7) | | 2,4,6-
tris[(dimethylamino)methyl]phenol | LOW (LogKOW = 0.773) | ## Mobility in soil | Ingredient | Mobility | |---|----------------------| | n-butanol | MEDIUM (KOC = 2.443) | | ethylenediamine | LOW (KOC = 24.72) | | diethylenetriamine | LOW (KOC = 87.53) | | 2,4,6-
tris[(dimethylamino)methyl]phenol | LOW (KOC = 15130) | ## **SECTION 13 DISPOSAL CONSIDERATIONS** ## Waste treatment methods Product / Packaging disposal - ► Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible ## Otherwise: #### Fig container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: Reduction Chemwatch: **9-93925** Page **14** of **16** Version No: 2.5 Carboguard 690 Part B Issue Date: **15/01/2015** Print Date: **08/02/2017** - ▶ Reuse - ▶ Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - ▶ It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - ► Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - ► Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ## **SECTION 14 TRANSPORT INFORMATION** ## **Labels Required** •3Y ## Land transport (ADG) | • • • | | | |------------------------------|--|--| | UN number | 1263 | | | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | | Packing group | III | | | Environmental hazard | Not Applicable | | | Special precautions for user | Special provisions 163 223 367 Limited quantity 5 L | | ## Air transport (ICAO-IATA / DGR) | UN number | 1263 | | |------------------------------|---|--| | UN proper shipping name | Paint (including paint, lacquer, enamel, stain, shellac, varnish, p reducing compounds) | olish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or | | Transport hazard class(es) | ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable ERG Code 3L | | | Packing group | III | | | Environmental hazard | Not Applicable | | | Special precautions for user | Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack Passenger and Cargo
Packing Instructions Passenger and Cargo Maximum Qty / Pack Passenger and Cargo Limited Quantity Packing Instructions Passenger and Cargo Limited Maximum Qty / Pack | A3 A72 A192 366 220 L 355 60 L Y344 10 L | ## Sea transport (IMDG-Code / GGVSee) | UN number | 1263 | |----------------------------|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac solutions, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | Packing group | III | | Environmental hazard | Not Applicable | ## Carboguard 690 Part B F-E, S-E EMS Number Special precautions for user Special provisions 163 223 367 955 Limited Quantities ## Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ## **SECTION 15 REGULATORY INFORMATION** ## Safety, health and environmental regulations / legislation specific for the substance or mixture ## XYLENE(1330-20-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs #### N-BUTANOL(71-36-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists ## ETHYLENEDIAMINE(107-15-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) Australia Exposure Standards Australia Hazardous Substances Information System - Consolidated Lists ## DIETHYLENETRIAMINE(111-40-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists Australia Hazardous Substances Information System - Consolidated Lists ## CASHEW NUT LIQUID/ FORMALDEHYDE/ ETHYLENEDIAMINE POLYMER(68413-28-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) ## 2,4,6-TRIS[(DIMETHYLAMINO)METHYL]PHENOL(90-72-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS | Australia inventory of Chemical Substances (AICS) | | | |---|---|--| | National Inventory | Status | | | Australia - AICS | Y | | | Canada - DSL | Y | | | Canada - NDSL | N (n-butanol; xylene; 2,4,6-tris[(dimethylamino)methyl]phenol; ethylenediamine; cashew nut liquid/ formaldehyde/ ethylenediamine polymer; diethylenetriamine) | | | China - IECSC | Y | | | Europe - EINEC / ELINCS /
NLP | N (cashew nut liquid/ formaldehyde/ ethylenediamine polymer) | | | Japan - ENCS | N (cashew nut liquid/ formaldehyde/ ethylenediamine polymer) | | | Korea - KECI | Υ | | | New Zealand - NZIoC | Y | | | Philippines - PICCS | Y | | | USA - TSCA | Υ | | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | Australia Inventory of Chemical Substances (AICS) ## **SECTION 16 OTHER INFORMATION** ## Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ## **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancel ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors Chemwatch: 9-93925 Page **16** of **16** Issue Date: 15/01/2015 Version No: 2.5 Print Date: 08/02/2017 ## Carboguard 690 Part B BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.