# Carboweld 11 Part A

# **RESENE PAINTS AUSTRALIA**

Version No: **2.3**Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 4

Issue Date: **09/02/2015** Print Date: **08/02/2017** S.GHS.AUS.EN

# SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

### **Product Identifier**

| Product name                  | Carboweld 11 Part A                                                                                                                                                                        |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Synonyms                      | Not Available                                                                                                                                                                              |
| Proper shipping name          | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) |
| Other means of identification | Not Available                                                                                                                                                                              |

### Relevant identified uses of the substance or mixture and uses advised against

| Relevant identified uses  | Part A of a two pack inorganic zinc coating |
|---------------------------|---------------------------------------------|
| itelevant lacitifica ases | i art A or a two pack morganic zinc coating |

# Details of the supplier of the safety data sheet

| = =                     | -                                               |
|-------------------------|-------------------------------------------------|
| Registered company name | RESENE PAINTS AUSTRALIA                         |
| Address                 | 7 Production Ave, Molendinar QLD 4214 Australia |
| Telephone               | +61 7 55126600                                  |
| Fax                     | +61 7 55126697                                  |
| Website                 | Not Available                                   |
| Email                   | Not Available                                   |
|                         |                                                 |

### Emergency telephone number

| Association / Organisation        | Not Available |
|-----------------------------------|---------------|
| Emergency telephone numbers       | 131126        |
| Other emergency telephone numbers | Not Available |

# CHEMWATCH EMERGENCY RESPONSE

| Primary Number | Alternative Number 1 | Alternative Number 2 |
|----------------|----------------------|----------------------|
| 1800 039 008   | 1800 039 008         | +612 9186 1132       |
|                |                      |                      |

Once connected and if the message is not in your prefered language then please dial 01

# **SECTION 2 HAZARDS IDENTIFICATION**

# Classification of the substance or mixture

# HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

| Poisons Schedule              | Not Applicable                                                                                                                                                                                                                                         |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classification <sup>[1]</sup> | Acute Toxicity (Oral) Category 4, Flammable Liquid Category 2, Reproductive Toxicity Category 2, Specific target organ toxicity - repeated exposure Category 2, Specific target organ toxicity - single exposure Category 1, Eye Irritation Category 2 |
| Legend:                       | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI                                                                                                                          |

# Label elements

GHS label elements







SIGNAL WORD DANGER

# Hazard statement(s)

| H302 | Harmful if swallowed.                                |
|------|------------------------------------------------------|
| H225 | Highly flammable liquid and vapour.                  |
| H361 | Suspected of damaging fertility or the unborn child. |

Chemwatch: 9-98837 Version No: 2.3

# Page 2 of 15 Carboweld 11 Part A

Issue Date: 09/02/2015 Print Date: 08/02/2017

| H373 | May cause damage to organs through prolonged or repeated exposure. |
|------|--------------------------------------------------------------------|
| H370 | Causes damage to organs.                                           |
| H319 | Causes serious eye irritation.                                     |

# Supplementary statement(s)

Not Applicable

# Precautionary statement(s) Prevention

| P201 | Obtain special instructions before use.                                           |
|------|-----------------------------------------------------------------------------------|
| P210 | Keep away from heat/sparks/open flames/hot surfaces No smoking.                   |
| P233 | Keep container tightly closed.                                                    |
| P260 | Do not breathe dust/fume/gas/mist/vapours/spray.                                  |
| P281 | Use personal protective equipment as required.                                    |
| P240 | Ground/bond container and receiving equipment.                                    |
| P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. |
| P242 | Use only non-sparking tools.                                                      |
| P243 | Take precautionary measures against static discharge.                             |
| P270 | Do not eat, drink or smoke when using this product.                               |
| P280 | Wear protective gloves/protective clothing/eye protection/face protection.        |

# Precautionary statement(s) Response

| P307+P311      | IF exposed: Call a POISON CENTER or doctor/physician.                                                                            |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| P308+P313      | IF exposed or concerned: Get medical advice/attention.                                                                           |  |
| P370+P378      | In case of fire: Use alcohol resistant foam or normal protein foam for extinction.                                               |  |
| P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |  |
| P314           | Get medical advice/attention if you feel unwell.                                                                                 |  |
| P337+P313      | If eye irritation persists: Get medical advice/attention.                                                                        |  |
| P301+P312      | IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.                                                       |  |
| P303+P361+P353 | IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.                       |  |
| P330           | Rinse mouth.                                                                                                                     |  |

# Precautionary statement(s) Storage

| P403+P235 | Store in a well-ventilated place. Keep cool. |
|-----------|----------------------------------------------|
| P405      | Store locked up.                             |

# Precautionary statement(s) Disposal

**P501** Dispose of contents/container in accordance with local regulations.

# SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

# Substances

See section below for composition of Mixtures

# Mixtures

| CAS No  | %[weight] | Name                |
|---------|-----------|---------------------|
| 67-63-0 | 30-40     | isopropanol         |
| 78-10-4 | 1-10      | tetraethyl silicate |
| 67-56-1 | 1-10      | methanol            |

# **SECTION 4 FIRST AID MEASURES**

| Description of first aid me | asures                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eye Contact                 | If this product comes in contact with the eyes:  Wash out immediately with fresh running water.  Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.  Seek medical attention without delay; if pain persists or recurs seek medical attention.  Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. |
| Skin Contact                | If skin or hair contact occurs:  ► Flush skin and hair with running water (and soap if available).  ► Seek medical attention in event of irritation.                                                                                                                                                                                                                                                                                                |
| Inhalation                  | <ul> <li>If fumes, aerosols or combustion products are inhaled remove from contaminated area.</li> <li>Other measures are usually unnecessary.</li> </ul>                                                                                                                                                                                                                                                                                           |
| Ingestion                   | <ul> <li>If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.</li> <li>If swallowed do NOT induce vomiting.</li> <li>If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.</li> </ul>                                                                       |

Carboweld 11 Part A Print Date: 08/02/2017

- Observe the patient carefully.
- ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- ► Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.
- Avoid giving milk or oils
- Avoid giving alcohol.

### Indication of any immediate medical attention and special treatment needed

- Feffective therapy against burns from oxalic acid involves replacement of calcium.
- Intravenous oxalic acid is substantially excreted (88% 90%) in the urine within 36 hours.

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

For acute or short term repeated exposures to ethanol:

- Acute ingestion in non-tolerant patients usually responds to supportive care with special attention to prevention of aspiration, replacement of fluid and correction of nutritional deficiencies (magnesium, thiamine pyridoxine, Vitamins C and K).
- ▶ Give 50% dextrose (50-100 ml) IV to obtunded patients following blood draw for glucose determination.
- Comatose patients should be treated with initial attention to airway, breathing, circulation and drugs of immediate importance (glucose, thiamine).
- Decontamination is probably unnecessary more than 1 hour after a single observed ingestion. Cathartics and charcoal may be given but are probably not effective in single ingestions.
- Fructose administration is contra-indicated due to side effects.

For acute or short term repeated exposures to isopropanol:

- ▶ Rapid onset respiratory depression and hypotension indicates serious ingestions that require careful cardiac and respiratory monitoring together with immediate intravenous access.
- Rapid absorption precludes the usefulness of emesis or lavage 2 hours post-ingestion. Activated charcoal and cathartics are not clinically useful. Ipecac is most useful when given 30 mins. post-ingestion.
- There are no antidotes
- Management is supportive. Treat hypotension with fluids followed by vasopressors.
- ▶ Watch closely, within the first few hours for respiratory depression; follow arterial blood gases and tidal volumes.
- Ice water lavage and serial haemoglobin levels are indicated for those patients with evidence of gastrointestinal bleeding.

For acute and short term repeated exposures to methanol:

- ► Toxicity results from accumulation of formaldehyde/formic acid.
- Clinical signs are usually limited to CNS, eyes and GI tract Severe metabolic acidosis may produce dyspnea and profound systemic effects which may become intractable. All symptomatic patients should have arterial pH measured. Evaluate airway, breathing and circulation.
- Stabilise obtunded patients by giving naloxone, glucose and thiamine.
- Decontaminate with Ipecac or lavage for patients presenting 2 hours post-ingestion. Charcoal does not absorb well; the usefulness of cathartic is not established.
- Forced diuresis is not effective; haemodialysis is recommended where peak methanol levels exceed 50 mg/dL (this correlates with serum bicarbonate levels below 18 meq/L).
- ► Ethanol, maintained at levels between 100 and 150 mg/dL, inhibits formation of toxic metabolites and may be indicated when peak methanol levels exceed 20 mg/dL. An intravenous solution of ethanol in D5W is optimal.
- Folate, as leucovorin, may increase the oxidative removal of formic acid. 4-methylpyrazole may be an effective adjunct in the treatment. 8.Phenytoin may be preferable to diazepam for controlling seizure.

[Ellenhorn Barceloux: Medical Toxicology]

BIOLOGICAL EXPOSURE INDEX - BEI

DeterminantIndexSampling TimeComment1. Methanol in urine15 mg/lEnd of shiftB, NS2. Formic acid in urine80 mg/gm creatinineBefore the shift at end of workweekB, NS

B: Background levels occur in specimens collected from subjects **NOT** exposed.

NS: Non-specific determinant - observed following exposure to other materials.

For acute or short term repeated exposures to xylene:

- Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- ▶ Pulmonary absorption is rapid with about 60-65% retained at rest.
- ▶ Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

 Determinant
 Index
 Sampling Time
 Comments

 Methylhippu-ric acids in urine
 1.5 gm/gm creatinine
 End of shift

1.5 gm/gm creatinine End of shift
2 mg/min Last 4 hrs of shift

# **SECTION 5 FIREFIGHTING MEASURES**

### **Extinguishing media**

- Alcohol stable foam.
- Dry chemical powder.
- ► BCF (where regulations permit)
- ▶ Carbon dioxide.
- ▶ Water spray or fog Large fires only.

### Special hazards arising from the substrate or mixture

Fire Incompatibility

• Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Chemwatch: 9-98837 Page 4 of 15 Issue Date: 09/02/2015 Version No: 2.3 Print Date: 08/02/2017

### Carboweld 11 Part A

| <ul> <li>Alert Fire Brigade and tell them location and nature of hazard.</li> <li>May be violently or explosively reactive.</li> <li>Wear breathing apparatus plus protective gloves in the event of a fire.</li> <li>Prevent, by any means available, spillage from entering drains or water course.</li> <li>Consider evacuation (or protect in place).</li> <li>Fight fire from a safe distance, with adequate cover.</li> <li>If safe, switch off electrical equipment until vapour fire hazard removed.</li> <li>Use water delivered as a fine spray to control the fire and cool adjacent area.</li> <li>Avoid spraying water onto liquid pools.</li> <li>Do not approach containers suspected to be hot.</li> <li>Cool fire exposed containers with water spray from a protected location.</li> <li>If safe to do so, remove containers from path of fire.</li> </ul> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Liquid and vapour are highly flammable. Severe fire hazard when exposed to heat, flame and/or oxidisers. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic furnes of carbon monoxide (CO). Combustion products include: , carbon dioxide (CO2) , silicon dioxide (SiO2) , other pyrolysis products typical of burning organic material. WARNING: Long standing in contact with air and light may result in the formation                                                                                                                                                                                                                                                                                                                 |
| of potentially explosive peroxides.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| •3YE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# **SECTION 6 ACCIDENTAL RELEASE MEASURES**

### Personal precautions, protective equipment and emergency procedures

See section 8

### **Environmental precautions**

See section 12

# Methods and material for containment and cleaning up

| Minor Spills | <ul> <li>Remove all ignition sources.</li> <li>Clean up all spills immediately.</li> <li>Avoid breathing vapours and contact with skin and eyes.</li> <li>Control personal contact with the substance, by using protective equipment.</li> <li>Contain and absorb small quantities with vermiculite or other absorbent material.</li> <li>Wipe up.</li> <li>Collect residues in a flammable waste container.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Major Spills | <ul> <li>Clear area of personnel and move upwind.</li> <li>Alert Fire Brigade and tell them location and nature of hazard.</li> <li>May be violently or explosively reactive.</li> <li>Wear breathing apparatus plus protective gloves.</li> <li>Prevent, by any means available, spillage from entering drains or water course.</li> <li>Consider evacuation (or protect in place).</li> <li>No smoking, naked lights or ignition sources.</li> <li>Increase ventilation.</li> <li>Stop leak if safe to do so.</li> <li>Water spray or fog may be used to disperse /absorb vapour.</li> <li>Contain spill with sand, earth or vermiculite.</li> <li>Use only spark-free shovels and explosion proof equipment.</li> <li>Collect recoverable product into labelled containers for recycling.</li> <li>Absorb remaining product with sand, earth or vermiculite.</li> <li>Collect solid residues and seal in labelled drums for disposal.</li> <li>Wash area and prevent runoff into drains.</li> <li>If contamination of drains or waterways occurs, advise emergency services.</li> </ul> |

Personal Protective Equipment advice is contained in Section 8 of the SDS.

# **SECTION 7 HANDLING AND STORAGE**

### Precautions for safe handling

- ► Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- DO NOT allow clothing wet with material to stay in contact with skin
- ▶ Electrostatic discharge may be generated during pumping this may result in fire.
- Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- ▶ Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then

### Safe handling ► Avoid splash filling.

▶ Do NOT use compressed air for filling discharging or handling operations.

The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example.

Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised.

A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxides or disposed of before this date. Chemwatch: 9-98837 Page 5 of 15 Issue Date: 09/02/2015 Version No. 2.3 Print Date: 08/02/2017

### Carboweld 11 Part A

► The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the container should add an opening date. Unopened containers received from the supplier should be safe to store for 18 months. Opened containers should not be stored for more than 12 months. Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs Use in a well-ventilated area Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked.

- Avoid smoking, naked lights, heat or ignition sources.
- When handling, DO NOT eat, drink or smoke
- Vapour may ignite on pumping or pouring due to static electricity.
- DO NOT use plastic buckets
- Earth and secure metal containers when dispensing or pouring product.
- Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- Keep containers securely sealed.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- Store in original containers in approved flame-proof area.
  - No smoking, naked lights, heat or ignition sources
  - DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- Other information Keep containers securely sealed.
  - Store away from incompatible materials in a cool, dry well ventilated area.
  - Protect containers against physical damage and check regularly for leaks.
  - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS

### Conditions for safe storage, including any incompatibilities

Suitable container

Storage incompatibility

### ▶ DO NOT use aluminium or galvanised containers

- ▶ Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- ► For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

### Oxalic acid (and its dihydrate):

- react violently with strong oxidisers, bromine, furfuryl alcohol, hydrogen peroxide (90%), phosphorous trichloride, silver powders
- reacts explosively with chlorites and hypochlorites
- mixture with some silver compounds form explosive salts of silver oxalate
- is incompatible with caustics and alkalis, urea, alkaline metals and steel
- ▶ attacks polyvinyl alcohol and acetal plastics

### Ethyl silicate:

- ▶ reacts slowly with water forming ethanol
- reacts violently with strong oxidisers
- is incompatible with acids, nitrates
- attacks some plastics and rubber

# Isopropanol (syn: isopropyl alcohol, IPA):

- Forms ketones and unstable peroxides on contact with air or oxygen; the presence of ketones especially methyl ethyl ketone (MEK, 2-butanone) will accelerate the rate of peroxidation
- reacts violently with strong oxidisers, powdered aluminium (exothermic), crotonaldehyde, diethyl aluminium bromide (ignition), dioxygenyl tetrafluoroborate (ignition/ ambient temperature), chromium trioxide (ignition), potassium-tert-butoxide (ignition), nitroform (possible explosion), oleum (pressure increased in closed container), cobalt chloride, aluminium triisopropoxide, hydrogen plus palladium dust (ignition), oxygen gas, phosgene, phosgene plus iron salts (possible explosion), sodium dichromate plus sulfuric acid (exothermic/ incandescence), triisobutyl aluminium
- reacts with phosphorus trichloride forming hydrogen chloride gas

### reacts, possibly violently, with alkaline earth and alkali metals, strong acids, strong caustics, acid anhydrides, halogens, aliphatic amines, aluminium isopropoxide, isocyanates, acetaldehyde, barium perchlorate (forms highly explosive perchloric ester compound), benzoyl peroxide, chromic acid, dialkylzincs, dichlorine oxide, ethylene oxide (possible explosion), hexamethylene diisocyanate (possible explosion), hydrogen peroxide (forms explosive compound), hypochlorous acid, isopropyl chlorocarbonate, lithium aluminium hydride, lithium tetrahydroaluminate, nitric acid, nitrogen dioxide, nitrogen tetraoxide (possible explosion), pentafluoroguanidine, perchloric acid (especially hot), permonosulfuric acid, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium, trinitromethane

- attacks some plastics, rubber and coatings
- reacts with metallic aluminium at high temperature
- ▶ may generate electrostatic charges
- ► Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates.

### Xvlenes:

- may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride
- attack some plastics, rubber and coatings
- may generate electrostatic charges on flow or agitation due to low conductivity.
- Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds.

- are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents.
- reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen
- react with strong acids, strong caustics, aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium

# Continued...

Version No: 2.3

Page 6 of 15 Issue Date: 09/02/2015

Carboweld 11 Part A Print Date: 08/02/2017

▶ should not be heated above 49 deg. C. when in contact with aluminium equipment

For alkyl aromatics:

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

- Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.
- Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- ► Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- Microwave conditions give improved yields of the oxidation products.
- ▶ Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs.

Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007

Secondary alcohols and some branched primary alcohols may produce potentially explosive peroxides after exposure to light and/ or heat.















Must not be stored together

May be stored together with specific preventions

— May be stored together

### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION**

### **Control parameters**

### OCCUPATIONAL EXPOSURE LIMITS (OEL)

### INGREDIENT DATA

| Source                       | Ingredient          | Material name     | TWA                 | STEL                 | Peak          | Notes         |
|------------------------------|---------------------|-------------------|---------------------|----------------------|---------------|---------------|
| Australia Exposure Standards | isopropanol         | Isopropyl alcohol | 983 mg/m3 / 400 ppm | 1230 mg/m3 / 500 ppm | Not Available | Not Available |
| Australia Exposure Standards | tetraethyl silicate | Ethyl silicate    | 85 mg/m3 / 10 ppm   | Not Available        | Not Available | Not Available |
| Australia Exposure Standards | methanol            | Methyl alcohol    | 262 mg/m3 / 200 ppm | 328 mg/m3 / 250 ppm  | Not Available | Sk            |

### **EMERGENCY LIMITS**

| Ingredient          | Material name                                                 | TEEL-1        | TEEL-2        | TEEL-3        |
|---------------------|---------------------------------------------------------------|---------------|---------------|---------------|
| isopropanol         | Isopropyl alcohol                                             | 400 ppm       | 2000 ppm      | 12000 ppm     |
| tetraethyl silicate | Tetraethyl orthosilicate; (Ethyl silicate; Tetraethoxysilane) | Not Available | Not Available | Not Available |
| methanol            | Methyl alcohol; (Methanol)                                    | Not Available | Not Available | Not Available |

| Ingredient          | Original IDLH | Revised IDLH    |
|---------------------|---------------|-----------------|
| isopropanol         | 12,000 ppm    | 2,000 [LEL] ppm |
| tetraethyl silicate | Not Available | Not Available   |
| methanol            | 25,000 ppm    | 6,000 ppm       |

# **Exposure controls**

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

# Appropriate engineering controls

| Type of Contaminant:                                                                                                                                                                                                | Air Speed:                         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|
| solvent, vapours, degreasing etc., evaporating from tank (in still air).                                                                                                                                            | 0.25-0.5 m/s<br>(50-100<br>f/min.) |  |
| aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s<br>(100-200<br>f/min.)   |  |
| direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)                                                      | 1-2.5 m/s<br>(200-500<br>f/min.)   |  |

Within each range the appropriate value depends on:

Chemwatch: 9-98837 Page **7** of **15** 

Version No. 2.3 Carboweld 11 Part A

> Lower end of the range Upper end of the range 1: Room air currents minimal or favourable to capture 1: Disturbing room air currents 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only

> Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

### Personal protection









# Eye and face protection

Safety glasses with side shields Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

### Skin protection

See Hand protection below

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161,10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161,10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

### **Body protection**

Hands/feet protection

### See Other protection below

### ▶ Overalls

- ▶ PVC Apron.
- PVC protective suit may be required if exposure severe
- Eyewash unit.
- Ensure there is ready access to a safety shower.

### Other protection

- - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
  - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
  - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

# Thermal hazards

Not Available

### Recommended material(s)

# GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computer-

### Respiratory protection

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Issue Date: 09/02/2015

Print Date: 08/02/2017

# Issue Date: **09/02/2015** Print Date: **08/02/2017**

### Carboweld 11 Part A

### *generated* selection: Carboweld 11 Part A

| Material          | СРІ |
|-------------------|-----|
| BUTYL             | С   |
| BUTYL/NEOPRENE    | С   |
| HYPALON           | С   |
| NAT+NEOPR+NITRILE | С   |
| NATURAL RUBBER    | С   |
| NATURAL+NEOPRENE  | С   |
| NEOPRENE          | С   |
| NEOPRENE/NATURAL  | С   |
| NITRILE           | С   |
| NITRILE+PVC       | С   |
| PE/EVAL/PE        | С   |
| PVA               | С   |
| PVC               | С   |
| PVDC/PE/PVDC      | С   |
| SARANEX-23        | С   |
| SARANEX-23 2-PLY  | С   |
| TEFLON            | С   |
| VITON             | С   |
| VITON/NEOPRENE    | С   |

<sup>\*</sup> CPI - Chemwatch Performance Index

**NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

| Required Minimum<br>Protection Factor | Half-Face<br>Respirator | Full-Face<br>Respirator | Powered Air<br>Respirator |
|---------------------------------------|-------------------------|-------------------------|---------------------------|
| up to 10 x ES                         | AX-AUS                  | -                       | AX-PAPR-AUS /<br>Class 1  |
| up to 50 x ES                         | -                       | AX-AUS / Class<br>1     | -                         |
| up to 100 x ES                        | -                       | AX-2                    | AX-PAPR-2 ^               |

#### ^ - Full-face

 $A(All\ classes) = Organic\ vapours,\ B\ AUS\ or\ B1 = Acid\ gasses,\ B2 = Acid\ gas\ or\ hydrogen\ cyanide(HCN),\ E = Sulfur\ dioxide(SO2),\ G = Agricultural\ chemicals,\ K = Ammonia(NH3),\ Hg = Mercury,\ NO = Oxides\ of\ nitrogen,\ MB = Methyl\ bromide,\ AX = Low\ boiling\ point\ organic\ compounds(below\ 65\ degC)$ 

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

# **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES**

# Information on basic physical and chemical properties

| Appearance                                   | coloured liquid   |                                         |               |
|----------------------------------------------|-------------------|-----------------------------------------|---------------|
| Physical state                               | Liquid            | Relative density (Water = 1)            | 0.85          |
| Odour                                        | Not Available     | Partition coefficient n-octanol / water | Not Available |
| Odour threshold                              | Not Available     | Auto-ignition temperature (°C)          | Not Available |
| pH (as supplied)                             | Not Available     | Decomposition temperature               | Not Available |
| Melting point / freezing point (°C)          | Not Available     | Viscosity (cSt)                         | Not Available |
| Initial boiling point and boiling range (°C) | Not Available     | Molecular weight (g/mol)                | Not Available |
| Flash point (°C)                             | 12                | Taste                                   | Not Available |
| Evaporation rate                             | < 1 BuAC = 1      | Explosive properties                    | Not Available |
| Flammability                                 | HIGHLY FLAMMABLE. | Oxidising properties                    | Not Available |
| Upper Explosive Limit (%)                    | Not Available     | Surface Tension (dyn/cm or mN/m)        | Not Available |
| Lower Explosive Limit (%)                    | Not Available     | Volatile Component (%vol)               | 81            |
| Vapour pressure (kPa)                        | Not Available     | Gas group                               | Not Available |
| Solubility in water (g/L)                    | Immiscible        | pH as a solution (1%)                   | Not Available |
| Vapour density (Air = 1)                     | >1                | VOC g/L                                 | Not Available |

# **SECTION 10 STABILITY AND REACTIVITY**

| Reactivity                         | See section 7                                                                                                                                                    |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical stability                 | <ul> <li>Unstable in the presence of incompatible materials.</li> <li>Product is considered stable.</li> <li>Hazardous polymerisation will not occur.</li> </ul> |
| Possibility of hazardous reactions | See section 7                                                                                                                                                    |

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

<sup>\*</sup> Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Chemwatch: 9-98837 Version No: 2.3

# Page 9 of 15 Carboweld 11 Part A

Issue Date: **09/02/2015**Print Date: **08/02/2017** 

| Conditions to avoid              | See section 7 |
|----------------------------------|---------------|
| Incompatible materials           | See section 7 |
| Hazardous decomposition products | See section 5 |

### **SECTION 11 TOXICOLOGICAL INFORMATION**

### Information on toxicological effects

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Inhalation of oxalic acid dusts or vapours can cause ulceration of the linings of the nose and throat, nosebleed, headache and nervousness. The airborne dust behaves as a strong acid producing severe local burns of the linings of the nose and throat.

Inhaling ethyl silicate may cause nose irritation, unsteadiness, tremors, excessive salivation, respiratory difficulty and unconsciousness. High concentrations can cause severe systemic injury, including unconsciousness, liver, lung and kidney damage and anaemia, but at these concentrations, the vapour becomes intolerable.

Animal testing shows that the most common signs of inhalation overdose is inco-ordination and drowsiness

Effects

Aliphatic alcohols with more than 3-carbons cause headache, dizziness, drowsiness, muscle weakness and delirium, central depression, coma, seizures and behavioural changes. Secondary respiratory depression and failure, as well as low blood pressure and irregular heart rhythms, may follow. Inhalation hazard is increased at higher temperatures.

Inhaled

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.

Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatique and inco-ordination.

The odour of isopropanol may give some warning of exposure, but odour fatigue may occur. Inhalation of isopropanol may produce irritation of the nose and throat with sneezing, sore throat and runny nose. The effects in animals subject to a single exposure, by inhalation, included inactivity or anaesthesia and histopathological changes in the nasal canal and auditory canal.

Minor but regular methanol exposures may effect the central nervous system, optic nerves and retinae. Symptoms may be delayed, with headache, fatigue, nausea, blurring of vision and double vision. Continued or severe exposures may cause damage to optic nerves, which may become severe with permanent visual impairment even blindness resulting.

WARNING: Methanol is only slowly eliminated from the body and should be regarded as a cumulative poison which cannot be made non-harmful [CCINFO] Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers.

Xylene is a central nervous system depressant

Oxalic acid is a minor, normal body constituent occurring in blood, kidney, muscle and liver at very low concentrations. Higher concentrations are toxic. Ingestion of 5 grams has caused death within hours. It is a poison which affects the central nervous system and kidney function. Low doses may cause low blood calcium concentration.

Swallowing ethyl silicate may cause liver, kidney and lung damage.

Blood concentration

Overexposure to non-ring alcohols causes nervous system symptoms. These include headache, muscle weakness and inco-ordination, giddiness, confusion, delirium and coma.

Ingestion of ethanol (ethyl alcohol, "alcohol") may produce nausea, vomiting, bleeding from the digestive tract, abdominal pain, and diarrhoea. Effects on the body:

| Dioca concontration | Litoto                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <1.5 g/L            | Mild: impaired vision, co-ordination and reaction time; emotional instability                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.5-3.0 g/L         | Moderate: Slurred speech, confusion, inco-ordination, emotional instability, disturbances in perception and senses, possible blackouts, and impaired objective performance in standardized tests. Possible double vision, flushing, fast heart rate, sweating and incontinence. Slow breathing may occur rarely and fast breathing may develop in cases of metabolic acidosis, low blood sugar and low blood potassium.  Central nervous system depression may progress to coma. |
| 3-5 g/L             | Severe: cold clammy skin, low body temperature and low blood pressure.  Atrial fibrillation and heart block have been reported. Depression of breathing may occur, respiratory failure may follow serious poisoning, choking on vomit may result in lung inflammation and swelling.  Convulsions due to severe low blood sugar may also occur. Acute liver inflammation may develop.                                                                                             |

Ingestion

Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)

The material has **NOT** been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence.

Following ingestion, a single exposure to isopropyl alcohol produced lethargy and non-specific effects such as weight loss and irritation. Ingestion of near-lethal doses of isopropanol produces histopathological changes of the stomach, lungs and kidneys, incoordination, lethargy, gastrointestinal tract irritation, and inactivity or anaesthesia.

Swallowing 10 ml. of isopropanol may cause serious injury; 100 ml. may be fatal if not promptly treated. The adult single lethal doses is approximately 250 ml. The toxicity of isopropanol is twice that of ethanol and the symptoms of intoxication appear to be similar except for the absence of an initial euphoric effect; gastritis and vomiting are more prominent. Ingestion may cause nausea, vomiting, and diarrhoea.

Chemwatch: 9-98837 Page 10 of 15

Issue Date: 09/02/2015 Version No. 2.3

Print Date: 08/02/2017 Carboweld 11 Part A

There is evidence that a slight tolerance to isopropanol may be acquired.

The liquid may be miscible with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives

Solutions of 5% to 10% oxalic acid are irritating to the skin after prolonged contact; early gangrene may occur after hand immersion in oxalate solutions. Skin contact with liquid ethyl silicate may result in dryness, cracking, and inflammation and redness, according to animal testing.

### Skin Contact

Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man. Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

There is evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Severe inflammation may be expected with pain.

Direct contact of the eye with ethanol (alcohol) may cause an immediate stinging and burning sensation, with reflex closure of the lid, and a temporary, tearing injury to the cornea together with redness of the conjunctiva. Discomfort may last 2 days but usually the injury heals without treatment. Animal testing showed that hydrolysed ethyl silicate only caused minor irritation if applied to the eye, if the eye was rinsed.

Isopropanol vapour may cause mild eye irritation at 400 ppm. Splashes may cause severe eye irritation, possible corneal burns and eye damage. Eye contact may cause tearing or blurring of vision.

Studies show that inhaling this substance for over a long period (e.g. in an occupational setting) may increase the risk of cancer.

Substance accumulation, in the human body, is likely and may cause some concern following repeated or long-term occupational exposure.

Toxic: danger of serious damage to health by prolonged exposure through inhalation and if swallowed.

This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects.

Based on experience with animal studies, exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother.

Prolonged exposure to ethanol may cause damage to the liver and cause scarring. It may also worsen damage caused by other agents.

Chronic dust inhalation of kaolin, can cause kaolinosis from kaolin deposition in the lungs causing distinct lung markings, abnormal inflation of air sacs, and chronic lung diseases (nodular pneumoconiosis). This condition is made worse by long duration of occupational exposure and pre-existing chest infection. Pre-employment screening is recommended.

There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Long term or repeated ingestion exposure of isopropanol may produce incoordination, lethargy and reduced weight gain.

### Chronic

Repeated inhalation exposure to isopropanol may produce narcosis, incoordination and liver degeneration. Animal data show developmental effects only at exposure levels that produce toxic effects in the adult animals. Isopropanol does not cause genetic damage in bacterial or mammalian cell cultures or in animals

There are inconclusive reports of human sensitisation from skin contact with isopropanol. Chronic alcoholics are more tolerant of systemic isopropanol than are persons who do not consume alcohol; alcoholics have survived as much as 500 ml. of 70% isopropanol.

Continued voluntary drinking of a 2.5% aqueous solution through two successive generations of rats produced no reproductive effects.

NOTE: Commercial isopropanol does not contain "isopropyl oil". An excess incidence of sinus and laryngeal cancers in isopropanol production workers has been shown to be caused by the byproduct "isopropyl oil". Changes in the production processes now ensure that no byproduct is formed. Production changes include use of dilute sulfuric acid at higher temperatures.

Long-term exposure to methanol vapour, at concentrations exceeding 3000 ppm, may produce cumulative effects characterised by gastrointestinal disturbances (nausea, vomiting), headache, ringing in the ears, insomnia, trembling, unsteady gait, vertigo, conjunctivitis and clouded or double vision. Liver and/or kidney injury may also result.

Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity.

| Carboweld 11 Part A | TOXICITY                                                  | IRRITATION                         |
|---------------------|-----------------------------------------------------------|------------------------------------|
| Carboweld 11 Part A | Not Available                                             | Not Available                      |
|                     | TOXICITY                                                  | IRRITATION                         |
|                     | Dermal (rabbit) LD50: 12792 mg/kg <sup>[1]</sup>          | Eye (rabbit): 10 mg - moderate     |
| isopropanol         | Inhalation (rat) LC50: 72.6 mg/L/4hr <sup>[2]</sup>       | Eye (rabbit): 100 mg - SEVERE      |
|                     | Oral (rat) LD50: 5000 mg/kg <sup>[2]</sup>                | Eye (rabbit): 100mg/24hr-moderate  |
|                     |                                                           | Skin (rabbit): 500 mg - mild       |
|                     | TOXICITY                                                  | IRRITATION                         |
|                     | Dermal (rabbit) LD50: 5890.5 mg/kg <sup>[1]</sup>         | Eye (human): 3000 ppm              |
| tetraethyl silicate | Inhalation (guinea pig) LC50: 2530 ppm/4hr <sup>[1]</sup> | Eye (rabbit): 100 mg mild          |
|                     | Oral (rat) LD50: >4675 mg/kg <sup>[1]</sup>               | Eye (rabbit): 500 mg/24h - mild    |
|                     |                                                           | Skin (rabbit): 500mg/24h moderate  |
|                     | TOXICITY                                                  | IRRITATION                         |
|                     | Dermal (rabbit) LD50: 15800 mg/kg <sup>[2]</sup>          | Eye (rabbit): 100 mg/24h-moderate  |
| methanol            | Inhalation (rat) LC50: 64000 ppm/4hr <sup>[2]</sup>       | Eye (rabbit): 40 mg-moderate       |
|                     | Oral (rat) LD50: >1187-2769 mg/kg <sup>[1]</sup>          | Skin (rabbit): 20 mg/24 h-moderate |
|                     |                                                           |                                    |

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.\* Value obtained from manufacturer's SDS. Unless otherwise specified data Legend: extracted from RTECS - Register of Toxic Effect of chemical Substances

Chemwatch: 9-98837 Page 11 of 15 Version No: 2.3

Carboweld 11 Part A

Issue Date: 09/02/2015 Print Date: 08/02/2017

| Carboweld 11 Part A                                                | No significant acute toxicological data identified in literature search.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |          |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|
| ISOPROPANOL                                                        | The substance is classified by IARC as Group 3:  NOT classifiable as to its carcinogenicity to humans.  Evidence of carcinogenicity may be inadequate or limited in animal testing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |          |
| TETRAETHYL SILICATE                                                | Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammator, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. |                          |          |
| Carboweld 11 Part A & TETRAETHYL SILICATE                          | Liver, kidney and lung damage may result from overexposure by inhalation or swallowing. Animal testing showed that exposure to 400 parts per million for 30 days can be lethal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |          |
| Carboweld 11 Part A & ISOPROPANOL                                  | Isopropanol is irritating to the eyes, nose and throat but generally not to the skin. Prolonged high dose exposure may also produce depression of the central nervous system and drowsiness. Few have reported skin irritation. It can be absorbed from the skin or when inhaled. Intentional swallowing is common particularly among alcoholics or suicide victims and also leads to fainting, breathing difficulty, nausea, vomiting and headache. In the absence of unconsciousness, recovery usually occurred. Repeated doses may damage the kidneys. A decrease in the frequency of mating has been found in among animals, and newborns have been found to have a greater incidence of low birth weight. Turnours of the testes have been observed in the male rat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |          |
| Carboweld 11 Part A & TETRAETHYL SILICATE                          | The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |          |
| Carboweld 11 Part A & ISOPROPANOL & TETRAETHYL SILICATE & METHANOL | The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |          |
| Acute Toxicity                                                     | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Carcinogenicity          | 0        |
| Skin Irritation/Corrosion                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reproductivity           | ✓        |
| Serious Eye<br>Damage/Irritation                                   | <b>✓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STOT - Single Exposure   | <b>✓</b> |
| Respiratory or Skin sensitisation                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STOT - Repeated Exposure | <b>~</b> |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |          |

Legend:

X − Data available but does not fill the criteria for classification
 ✓ − Data available to make classification

Data Not Available to make classification

### **SECTION 12 ECOLOGICAL INFORMATION**

# Toxicity

| Ingredient          | Endpoint | Test Duration (hr) | Species                       | Value         | Source |
|---------------------|----------|--------------------|-------------------------------|---------------|--------|
| isopropanol         | LC50     | 96                 | Fish                          | 183.844mg/L   | 3      |
| isopropanol         | EC50     | 48                 | Crustacea                     | 12500mg/L     | 5      |
| isopropanol         | EC50     | 96                 | Algae or other aquatic plants | 993.232mg/L   | 3      |
| isopropanol         | EC50     | 384                | Crustacea                     | 42.389mg/L    | 3      |
| isopropanol         | NOEC     | 5760               | Fish                          | 0.02mg/L      | 4      |
| tetraethyl silicate | LC50     | 96                 | Fish                          | >245mg/L      | 2      |
| tetraethyl silicate | EC50     | 48                 | Crustacea                     | >75mg/L       | 2      |
| tetraethyl silicate | EC50     | 96                 | Algae or other aquatic plants | <1.000mg/L    | 3      |
| tetraethyl silicate | EC50     | 72                 | Algae or other aquatic plants | >22mg/L       | 2      |
| tetraethyl silicate | NOEC     | 72                 | Algae or other aquatic plants | >=22mg/L      | 2      |
| methanol            | LC50     | 96                 | Fish                          | >100mg/L      | 4      |
| methanol            | EC50     | 48                 | Crustacea                     | >10000mg/L    | 4      |
| methanol            | BCF      | 24                 | Algae or other aquatic plants | 0.05mg/L      | 4      |
| methanol            | EC50     | 24                 | Algae or other aquatic plants | 0.0246708mg/L | 4      |
| methanol            | NOEC     | 72                 | Crustacea                     | 0.1mg/L       | 4      |

For Aromatic Substances Series:

Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Atmospheric Fate: PAHs are 'semi-volatile substances' which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive.

Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > naphthalenes. Anthroene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. For Ethanol:

Version No: 2.3 Carboweld 11 Part A

log Kow: -0.31 to -0.32: Koc 1: Estimated BCF= 3; Half-life (hr) air: 144:

Half-life (hr) H2O surface water: 144: Henry's atm m3 /mol: 6 29F-06: BOD 5 if unstated: 0.93-1.67.63%

COD: 1.99-2.11.97%:

ThOD: 2.1.

Environmental Fate: Terrestrial - Ethanol quickly biodegrades in soil but may leach into ground water; most is lost by evaporation. Ethanol is expected to have very high mobility in soil. Volatilization of ethanol from moist soil surfaces is expected to be an important fate process. The potential for volatilization of ethanol from dry soil surfaces may exist. Biodegradation is expected to be an important fate process for ethanol based on half-lives on the order of a few days for ethanol in sandy soil/groundwater microcosms.

Atmospheric Fate: Ethanol is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase ethanol is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 5 days. Ethanol readily degraded by reaction with photochemically produced hydroxy radicals; release into air will result in photodegradation and wet deposition

Aquatic Fate: When released into water ethanol readily evaporates and is biodegradable. Ethanol is not expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected and volatilization half-lives for a model river and model lake are 3 and 39 days, respectively. Bioconcentration in aquatic organisms is considered to be low. Hydrolysis and photolysis in sunlit surface waters is not expected to be an important environmental fate process for ethanol and is unlikely to be persistent in aquatic environments.

### For tetraethyl silicate:

### Environmental fate:

Biodegradability:

98% DOC Die Away test: EC 79/831 Readily biodegradable.

### **Ecotoxicity:**

Fish LC50 (96 h): Brachydanio rerio >= 245 mg/l (acute toxicity test; EC 92/69)

Bacterial EC10 (5 h): Pseudomonas putida > 1878 mg/l (oxygen consumption test; on the lines of: Bringmann und Kuhn, Z. Wasser Abwasser Forsch. 10, 87-98 (1977))

Daphnia magna EC10 (48 h): > 844 mg/l (EC 84/449)

Algae EC50 (72 h): Scenedesmus subspicatus 410.4 mg/l (Cell multiplication inhibition test: EC 88/302)

Bentonite and kaolin have low toxicity to aquatic species, a large number of which have been tested

For Isopropanol (IPA): log Kow: -0.16- 0.28:

Half-life (hr) air: 33-84;

Half-life (hr) H2O surface water: 130;

Henry's atm m3 /mol: 8.07E-06;

BOD 5: 1.19,60%;

COD: 1.61-2.30, 97%;

ThOD: 2.4; BOD 20: >70%

Environmental Fate: IPA is expected to partition primarily to the aquatic compartment (77.7%) with the remainder to the air (22.3%). Overall, IPA presents a low potential hazard to aquatic or terrestrial biota

Aquatic Fate: IPA has been shown to biodegrade rapidly in aerobic, aqueous biodegradation tests and therefore, would not be expected to persist in aquatic habitats. IPA is expected to volatilize slowly from water. The calculated half-life for the volatilization from surface water (1 meter depth) is predicted to range from 4 days (from a river) to 31 days (from a lake). Hydrolysis is not considered a significant degradation process for IPA, however, aerobic biodegradation of IPA has been shown to occur rapidly under non-acclimated conditions. IPA is readily biodegradable in both freshwater and saltwater (72 to 78% biodegradation in 20 days).

Terrestrial Fate: Soil - IPA is also not expected to persist in surface soils due to rapid evaporation to the air. IPA will evaporate quickly from soil and is not expected to partition to the soil however; IPA has the potential to leach through the soil due to its low soil adsorption. Plants - Toxicity of IPA to plants is expected to be low.

Atmospheric Fate: IPA is subject to oxidation predominantly by hydroxy radical attack. The atmospheric half-life is expected to be 10 to 25 hours. Direct photolysis is not expected to be an important transformation process for the degradation of IPA.

Ecotoxicity: IPA has been shown to have a low order of acute aquatic toxicity and is not acutely toxic to fish and invertebrates. Chronic aquatic toxicity has also been shown to be of low concern and bioconcentration in aquatic organisms is not expected to occur.

For Xvlenes:

log Koc : 2.05-3.08; Koc : 25.4-204; Half-life (hr) air : 0.24-42; Half-life (hr) H2O surface water : 24-672; Half-life (hr) H2O ground : 336-8640; Half-life (hr) soil : 52-672; Henry's Pa m3 /mol : 637-879; Henry's atm m3 /mol - 7.68E-03; BOD 5 if unstated - 1.4,1%; COD - 2.56,13% ThOD - 3.125 : BCF : 23; log BCF : 1.17-2.41.

Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years.

Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol, and 4-nitro-2,6-dimethylphenol.

Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L.

DO NOT discharge into sewer or waterways.

# Persistence and degradability

| Ingredient          | Persistence: Water/Soil   | Persistence: Air         |
|---------------------|---------------------------|--------------------------|
| isopropanol         | LOW (Half-life = 14 days) | LOW (Half-life = 3 days) |
| tetraethyl silicate | HIGH                      | HIGH                     |
| methanol            | LOW                       | LOW                      |

### Bioaccumulative potential

| Ingredient          | Bioaccumulation       |
|---------------------|-----------------------|
| isopropanol         | LOW (LogKOW = 0.05)   |
| tetraethyl silicate | LOW (LogKOW = 0.0362) |
| methanol            | LOW (BCF = 10)        |

Version No: 2.3

### Carboweld 11 Part A

Issue Date: **09/02/2015** Print Date: **08/02/2017** 

### Mobility in soil

| Ingredient          | Mobility          |
|---------------------|-------------------|
| isopropanol         | HIGH (KOC = 1.06) |
| tetraethyl silicate | LOW (KOC = 8766)  |
| methanol            | HIGH (KOC = 1)    |

# **SECTION 13 DISPOSAL CONSIDERATIONS**

### Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ► Reduction
- ▶ Reuse
- Recycling
- ► Disposal (if all else fails)

# Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility
  can be identified.
- Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

# **SECTION 14 TRANSPORT INFORMATION**

### **Labels Required**



Marine Pollutant

NO

HAZCHEM

# Land transport (ADG)

| UN number                    | 1263                                                                                                                                                                                       |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UN proper shipping name      | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) |
| Transport hazard class(es)   | Class 3 Subrisk Not Applicable                                                                                                                                                             |
| Packing group                | II .                                                                                                                                                                                       |
| Environmental hazard         | Not Applicable                                                                                                                                                                             |
| Special precautions for user | Special provisions 163 367 Limited quantity 5 L                                                                                                                                            |

### Air transport (ICAO-IATA / DGR)

| All transport (IOAO IAIA / E |                                                                                                                                                                                           |                            |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| UN number                    | 1263                                                                                                                                                                                      |                            |  |
| UN proper shipping name      | Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds) |                            |  |
| Transport hazard class(es)   | ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable ERG Code 3L                                                                                                                          |                            |  |
| Packing group                | П                                                                                                                                                                                         |                            |  |
| Environmental hazard         | Not Applicable                                                                                                                                                                            |                            |  |
| Special precautions for user | Special provisions  Cargo Only Packing Instructions  Cargo Only Maximum Qty / Pack                                                                                                        | A3 A72 A192<br>364<br>60 L |  |

Chemwatch: 9-98837 Page 14 of 15 Issue Date: 09/02/2015 Version No: 2.3 Print Date: 08/02/2017

### Carboweld 11 Part A

| Passenger and Cargo Packing Instructions                  | 353  |
|-----------------------------------------------------------|------|
| Passenger and Cargo Maximum Qty / Pack                    | 5 L  |
| Passenger and Cargo Limited Quantity Packing Instructions | Y341 |
| Passenger and Cargo Limited Maximum Qty / Pack            | 1L   |

# Sea transport (IMDG-Code / GGVSee)

| UN number                    | 1263                                                                                                                                                                                                 |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| UN proper shipping name      | PAINT (including paint, lacquer, enamel, stain, shellac solutions, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) |  |
| Transport hazard class(es)   | IMDG Class 3 IMDG Subrisk Not Applicable                                                                                                                                                             |  |
| Packing group                | П                                                                                                                                                                                                    |  |
| Environmental hazard         | Not Applicable                                                                                                                                                                                       |  |
| Special precautions for user | EMS Number F-E, S-E Special provisions 163 367 Limited Quantities 5 L                                                                                                                                |  |

# Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

# **SECTION 15 REGULATORY INFORMATION**

### Safety, health and environmental regulations / legislation specific for the substance or mixture

### ISOPROPANOL(67-63-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

| Australia Exposure Standards                                           | Australia Inventory of Chemical Substances (AICS)                                  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Australia Hazardous Substances Information System - Consolidated Lists | International Agency for Research on Cancer (IARC) - Agents Classified by the IARC |
|                                                                        | Monographs                                                                         |

# TETRAETHYL SILICATE(78-10-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS

| Australia Exposure Standards                                           | Australia Inventory of Chemical Substances (AICS) |
|------------------------------------------------------------------------|---------------------------------------------------|
| Australia Hazardous Substances Information System - Consolidated Lists |                                                   |

### METHANOL(67-56-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS) Australia Exposure Standards Australia Hazardous Substances Information System - Consolidated Lists

| National Inventory               | Status                                                                                                                                                                                |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Australia - AICS                 | Υ                                                                                                                                                                                     |
| Canada - DSL                     | Y                                                                                                                                                                                     |
| Canada - NDSL                    | N (methanol; tetraethyl silicate; isopropanol)                                                                                                                                        |
| China - IECSC                    | Y                                                                                                                                                                                     |
| Europe - EINEC / ELINCS /<br>NLP | Y                                                                                                                                                                                     |
| Japan - ENCS                     | Υ                                                                                                                                                                                     |
| Korea - KECI                     | Υ                                                                                                                                                                                     |
| New Zealand - NZIoC              | Y                                                                                                                                                                                     |
| Philippines - PICCS              | Υ                                                                                                                                                                                     |
| USA - TSCA                       | Y                                                                                                                                                                                     |
| Legend:                          | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) |

# **SECTION 16 OTHER INFORMATION**

### Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

### Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

Chemwatch: 9-98837 Page **15** of **15** Issue Date: 09/02/2015 Version No: 2.3 Print Date: 08/02/2017 Carboweld 11 Part A

TEEL: Temporary Emergency Exposure Limit。
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value

LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.

# Zinc Filler

# **RESENE PAINTS AUSTRALIA**

Chemwatch: 9-43111 Version No: 2.4

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: 18/12/2013 Print Date: 07/02/2014 Initial Date: Not Available S.GHS.AUS.EN

# SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

| Product Identifier   |                                 |
|----------------------|---------------------------------|
| Product name         | Zinc Filler                     |
| Chemical Name        | ZINC POWDER, NON-WATER REACTIVE |
| Synonyms             | Not Available                   |
| Proper shipping name | Not Applicable                  |
| Chemical formula     | Not Applicable                  |

# Relevant identified uses of the substance or mixture and uses advised against

Not Available

7440-66-6.

Relevant identified uses

Use according to manufacturer's directions.

# Details of the supplier of the safety data sheet

Other means of identification

CAS number

| Registered company name | RESENE PAINTS AUSTRALIA                            |   |  |
|-------------------------|----------------------------------------------------|---|--|
| Address                 | 7 Production Ave, Molendinar 4214 QLD<br>Australia |   |  |
| Telephone               | +61 7 55949522                                     |   |  |
| Fax                     | +61 7 55126697                                     | 1 |  |
| Website                 | Not Available                                      |   |  |
| Email                   | Not Available                                      |   |  |

### Emergency telephone number

| Association / Organisation        | Not Available | <br>   | <br>   |
|-----------------------------------|---------------|--------|--------|
| Emergency telephone numbers       | 131126        | 1      | 1      |
| Other emergency telephone numbers | 131126        | I<br>I | I<br>I |

# CHEMWATCH EMERGENCY RESPONSE

| Primary Number | Alternative Number 1 | Alternative Number 2 |
|----------------|----------------------|----------------------|
| 1800 039 008   | +612 9186 1132       | Not Available        |

Once connected and if the message is not in your prefered language then please dial  ${\bf 01}$ 

# **SECTION 2 HAZARDS IDENTIFICATION**

### Classification of the substance or mixture

HAZARDOUS CHEMICAL.

| Poisons Schedule                  |                                                                                                                                |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| GHS Classification <sup>[1]</sup> | Acute Toxicity (Inhalation) Category 4, Chronic Aquatic Hazard Category 1                                                      |
| Legend:                           | 1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI |

### Label elements

**GHS** label elements





SIGNAL WORD | WARNING

Hazard statement(s)

H332

Harmful if inhaled

H410

Very toxic to aquatic life with long lasting effects

### Supplementary statement(s)

Not Applicable

### Precautionary statement(s): Prevention

| P271 | Use only outdoors or in a well-ventilated area.   |
|------|---------------------------------------------------|
| P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
| P273 | Avoid release to the environment.                 |

### Precautionary statement(s): Response

| P312      | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.      |
|-----------|----------------------------------------------------------------------------|
| P391      | Collect spillage.                                                          |
| P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. |

# Precautionary statement(s): Storage

Not Applicable

Precautionary statement(s): Disposal

P501

Dispose of contents/container to authorised chemical landfill or if organic to high temperature incineration

### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS**

### **Substances**

See section below for composition of Mixtures

### **Mixtures**

| CAS No     | %[weight] | Name                            |
|------------|-----------|---------------------------------|
| 7440-66-6. | 100       | zinc powder, non-water reactive |

### **SECTION 4 FIRST AID MEASURES**

# Description of first aid measures

| Eye Contact  | If this product comes in contact with eyes:  Wash out immediately with water.  If irritation continues, seek medical attention.  Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.  DO NOT attempt to remove particles attached to or embedded in eye.  Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye.  Seek urgent medical assistance, or transport to hospital. |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skin Contact | If skin contact occurs:  Immediately remove all contaminated clothing, including footwear.  Flush skin and hair with running water (and soap if available).  Seek medical attention in event of irritation.                                                                                                                                                                                                                                                                                                                                      |
| Inhalation   | <ul> <li>If fumes, aerosols or combustion products are inhaled remove from contaminated area.</li> <li>Other measures are usually unnecessary.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                        |
| Ingestion    | <ul> <li>Immediately give a glass of water.</li> <li>First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                              |

### Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce "metal fume fever" in workers from an acute or long term exposure.

- Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
- Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months.
- ▶ Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
- ▶ The general approach to treatment is recognition of the disease, supportive care and prevention of exposure.
- Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.

[Ellenhorn and Barceloux: Medical Toxicology]

- ▶ Absorption of zinc compounds occurs in the small intestine.
- The metal is heavily protein bound.
- ▶ Elimination results primarily from faecal excretion.
- ► The usual measures for decontamination (Ipecac Syrup, lavage, charcoal or cathartics) may be administered, although patients usually have sufficient vomiting not to require them.
- ▶ CaNa2EDTA has been used successfully to normalise zinc levels and is the agent of choice.

### Zinc Filler

[Ellenhorn and Barceloux: Medical Toxicology]

### **SECTION 5 FIREFIGHTING MEASURES**

### Extinguishing media

Metal dust fires need to be smothered with sand, inert dry powders.

### Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Reacts with acids producing flammable / explosive hydrogen (H2) gas

### Advice for firefighters

| Fire Fighting         |
|-----------------------|
| Fire/Explosion Hazard |

Alert Fire Brigade and tell them location and nature of hazard.

Zinc dust clouds are potentially explosive.

### **SECTION 6 ACCIDENTAL RELEASE MEASURES**

### Personal precautions, protective equipment and emergency procedures

| Minor Spills | Environmental hazard - contain spillage. |
|--------------|------------------------------------------|
| Major Spills | Environmental hazard - contain spillage. |
|              |                                          |

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

# **SECTION 7 HANDLING AND STORAGE**

# Precautions for safe handling

| Safe handling     | For molten metals:              |
|-------------------|---------------------------------|
| Other information | ▶ Store in original containers. |

# Conditions for safe storage, including any incompatibilities

| Suitable container      | ▶ Lined metal can, lined metal pail/ can.            |
|-------------------------|------------------------------------------------------|
| Storage incompatibility | ■ WARNING: Avoid or control reaction with peroxides. |

# PACKAGE MATERIAL INCOMPATIBILITIES

# **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION**

# **Control parameters**

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Not Available

### **EMERGENCY LIMITS**

| Ingredient                      | TEEL-0  | TEEL-1  | TEEL-2  | TEEL-3   |
|---------------------------------|---------|---------|---------|----------|
| zinc powder, non-water reactive | 10(ppm) | 30(ppm) | 50(ppm) | 200(ppm) |
|                                 |         |         |         |          |
|                                 |         |         |         |          |

| Ingredient  | Original IDLH | Revised IDLH  |
|-------------|---------------|---------------|
| Zinc Filler | Not Available | Not Available |

### **Exposure controls**

| Appropriate engineering controls | Metal dusts must be collected at the source of generation as they are potentially explosive.                                                              |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Personal protection              |                                                                                                                                                           |  |
| Eye and face protection          | ▶ Safety glasses with side shields.                                                                                                                       |  |
| Skin protection                  | See Hand protection below                                                                                                                                 |  |
| Hand protection                  | The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. |  |
| Body protection                  | See Other protection below                                                                                                                                |  |
| Other protection                 | ▶ Overalls.                                                                                                                                               |  |
| Thermal hazards                  |                                                                                                                                                           |  |

# Recommended material(s)

# GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the: Zinc Filler Not Available

| Material | CPI |
|----------|-----|

<sup>\*</sup> CPI - Chemwatch Performance Index

# Respiratory protection

| Required<br>Minimum<br>Protection<br>Factor | Half-Face<br>Respirator | Full-Face<br>Respirator | Powered Air<br>Respirator |
|---------------------------------------------|-------------------------|-------------------------|---------------------------|
| up to 10 x ES                               | P1<br>Air-line*         | -                       | PAPR-P1<br>-              |
| up to 50 x ES                               | Air-line**              | P2                      | PAPR-P2                   |
| up to 100 x ES                              | -                       | P3                      | -                         |
|                                             |                         | Air-line*               | -                         |
| 100+ x ES                                   | -                       | Air-line**              | PAPR-P3                   |

\* - Negative pressure demand \*\* - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

# **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES**

# Information on basic physical and chemical properties

| Appearance                                   | grey powder    |                                         |               |
|----------------------------------------------|----------------|-----------------------------------------|---------------|
|                                              |                |                                         |               |
| Physical state                               | Divided Solid  | Relative density (Water = 1)            | 7.6           |
| Odour                                        | Not Available  | Partition coefficient n-octanol / water | Not Available |
| Odour threshold                              | Not Available  | Auto-ignition temperature (°C)          | Not Available |
| pH (as supplied)                             | Not Available  | Decomposition temperature               | Not Available |
| Melting point / freezing point (°C)          | Not Available  | Viscosity (cSt)                         | Not Available |
| Initial boiling point and boiling range (°C) | Not Available  | Molecular weight (g/mol)                | Not Available |
| Flash point (°C)                             | Not Applicable | Taste                                   | Not Available |
| Evaporation rate                             | Not Available  | Explosive properties                    | Not Available |
| Flammability                                 | Not Available  | Oxidising properties                    | Not Available |
| Upper Explosive Limit (%)                    | Not Available  | Surface Tension (dyn/cm or mN/m)        | Not Available |
| Lower Explosive Limit (%)                    | Not Available  | Volatile Component (%vol)               | Negligible    |
| Vapour pressure (kPa)                        | Not Available  | Gas group                               | Not Available |
| Solubility in water (g/L)                    | Immiscible     | pH as a solution(1%)                    | Not Available |
| Vapour density (Air = 1)                     | Not Available  | VOC g/L                                 |               |

# **SECTION 10 STABILITY AND REACTIVITY**

| Reactivity                         | See section 7                                                             |
|------------------------------------|---------------------------------------------------------------------------|
| Chemical stability                 | Product is considered stable and hazardous polymerisation will not occur. |
| Possibility of hazardous reactions | See section 7                                                             |
| Conditions to avoid                | See section 7                                                             |
| Incompatible materials             | See section 7                                                             |
| Hazardous decomposition products   | See section 5                                                             |

# **SECTION 11 TOXICOLOGICAL INFORMATION**

# Information on toxicological effects

| Inhaled      | Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation.                                                |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ingestion    | The material has                                                                                                                                                                                                                   |  |
| Skin Contact | Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.                                 |  |
| Еуе          | Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfo characterised by tearing or conjunctival redness (as with windburn).             |  |
| Chronic      | Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course. |  |

# Zinc Filler

| Zinc Filler                     | TOXICITY  Not Available | IRRITATION  Not Available |
|---------------------------------|-------------------------|---------------------------|
| zinc powder, non-water reactive | TOXICITY  Not Available | IRRITATION  Not Available |

| Acute Toxicity                    | Acute Toxicity (Inhalation) Category 4 | Carcinogenicity          | Not Applicable |
|-----------------------------------|----------------------------------------|--------------------------|----------------|
| Skin Irritation/Corrosion         | Not Applicable                         | Reproductivity           | Not Applicable |
| Serious Eye Damage/Irritation     | Not Applicable                         | STOT - Single Exposure   | Not Applicable |
| Respiratory or Skin sensitisation | Not Applicable                         | STOT - Repeated Exposure | Not Applicable |
| Mutagenicity                      | Not Applicable                         | Aspiration Hazard        | Not Applicable |

### **CMR STATUS**

# **SECTION 12 ECOLOGICAL INFORMATION**

### **Toxicity**

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

# Persistence and degradability

| Ingredient    | Persistence: Water/Soil | Persistence: Air |
|---------------|-------------------------|------------------|
| Not Available | Not Available           | Not Available    |

### Bioaccumulative potential

| Ingredient    | Bioaccumulation |
|---------------|-----------------|
| Not Available | Not Available   |

# Mobility in soil

| Ingredient    | Mobility      |
|---------------|---------------|
| Not Available | Not Available |

# **SECTION 13 DISPOSAL CONSIDERATIONS**

### Waste treatment methods

Product / Packaging disposal

Legislation addressing waste disposal requirements may differ by country, state and/ or territory.

# **SECTION 14 TRANSPORT INFORMATION**

# **Labels Required**

Marine Pollutant



HAZCHEM

Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

# **SECTION 15 REGULATORY INFORMATION**

# Safety, health and environmental regulations / legislation specific for the substance or mixture

zinc powder, non-water reactive(7440-66-6.) is found on the following regulatory lists

"International Maritime Dangerous Goods Requirements (IMDG Code)", "International Maritime Dangerous Goods Requirements (IMDG Code) - Substance Index", "United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)", "Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes", "United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Spanish)", "Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (English)", "International Air Transport Association (IATA) Dangerous Goods Regulations", "Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List", "Australia - New South Wales Protection of the Environment Operations (Waste) Regulation 2005 -Characteristics of trackable wastes"

 Chemwatch: 9-43111
 Page 6 of 6
 Issue Date: 18/12/2013

 Version No: 2.4
 Zinc Filler
 Print Date: 07/02/2014

# Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.